Low-cost and efficient bifunctional catalysts are urgently needed for overall water splitting used in large-scale energy storage. In this study, we develop a nickel and iron (di)sulfide (Ni-Fe-S) composite catalyst that is in situ synthesized and fixed within the intergranular nanopores inside high pure polycrystalline graphite. Two precursor solutions (reactants) may permeate the graphite intergranular pores to a depth of more than 3.5 mm. The nanoscale pores serve as an array of nanoreactors for the synthesis of the Ni-Fe-S nanoparticles under conditions much milder than usual. The prepared catalyst efficiently catalyzes both the hydrogen and oxygen evolution reactions (HER and OER) in 1.0 M KOH. It delivers a current density of 400 mA cm at a full cell voltage of around 2.3 V without considerable activity decay over 24 h electrolysis. The active species of the catalyst are different for the HER and OER and discussed accordingly. The synthesis strategy based on the nanopores in a monolithic conductive substrate proves to be a simple, efficient, and promising way to prepare electrocatalysts that are cheap, abundant, and industrially attractive.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202100891DOI Listing

Publication Analysis

Top Keywords

graphite intergranular
8
intergranular nanopores
8
water splitting
8
high-performance bifunctional
4
bifunctional ni-fe-s
4
catalyst
4
ni-fe-s catalyst
4
catalyst situ
4
situ synthesized
4
synthesized graphite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!