Several genes have been reported to be involved in spermatogenesis but their functional importance in male fertility is yet needed to be elucidated. Therefore, in current research, we focused to explore the in vivo role of evolutionary conserved and testis-specifically expressed, C4orf46, gene in male mouse fertility and spermatogenesis. The expression profile of C4orf46 is specific to testes and expressed in testes from 7 days of postpartum to onward. Thus, we generated the C4orf46 knockout mice by utilizing CRISPR/Cas9 genome editing technology and examined gene function in spermatogenesis and fertility. Surprisingly, C4orf46 knockout mice were completely fertile, displayed normal testes morphology, however, higher sperm contents were observed in knockout mice compared to wild type (WT) littermates. Subsequently, intact testis histology and architecture of seminiferous tubules were observed in C4orf46 knockout and WT mice. Similarly, sperm morphology and swimming velocity of C4orf46 knockout mice were comparable with the WT littermates. Furthermore, all type of germ cells ranging from spermatogonia to mature spermatozoa were observed in the testes and epididymis sections of C4orf46 knockout mice suggesting that disruption of C4orf46 did not impact spermatogenesis. Moreover, meiotic prophase I progression was normal, and each type of cell population was comparable between knockout and WT mice. Overall, finding from this research indicates that C4orf46 is not an essential gene for fertility in mice. This study will help researchers to avoid the repetition and duplication of efforts, and to explore the genes that are indispensable for spermatogenesis and male fertility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00335-021-09879-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!