Label-free molecular imaging is a promising utility to study tissues in terms of the identification of their compartments as well as chemical features and alterations induced by disease. The aim of this work was to assess if higher magnification of optics in the Fourier transform infrared (FT-IR) microscope coupled with the focal plane detector resulted in better resolution of lung structures and if the histopathological features correlated with clustering of spectral images. FT-IR spectroscopic imaging was performed on paraffinized lung tissue sections from mice with optics providing a total magnification of 61× and 36×. Then, IR images were subjected to unsupervised cluster analysis and, subsequently, cluster maps were compared with hematoxylin and eosin staining of the same tissue section. Based on these results, we observed minute features such as cellular compartments in single alveoli and bronchiole, blood cells and megakaryocytes in a vessel as well as atelectasis of the lung. In the case of the latter, differences in composition were also noted between the tissue from the non-cancerous and cancerous specimen. This study demonstrated the ability of high-definition FT-IR imaging to evaluate the chemical features of well-resolved lung structures that could complement the histological examination widely used in animal models of disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/00037028211025540 | DOI Listing |
Biomark Res
December 2024
Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasunup, Jeollanamdo, 58128, Republic of Korea.
The immune system continuously interacts with tumors, possibly leading to systemic alterations in circulating immune cells. However, the potential of these cancer-associated changes for diagnostic purposes remains poorly explored. To investigate this, we conducted a comprehensive flow cytometric analysis of 452 peripheral blood mononuclear cell (PBMC) samples from 206 non-small-cell lung cancer (NSCLC) patients, 100 small-cell lung cancer (SCLC) patients, 94 healthy individuals, and 52 benign lung disease (BLD) patients.
View Article and Find Full Text PDFRespir Res
December 2024
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
Background: The long-term relationship between body composition and lung function has not yet been fully demonstrated. We investigated the longitudinal association between muscle-to-fat (MF) ratio and lung function among middle-aged general population.
Methods: Participants were enrolled from a community-based prospective cohort between 2005 and 2014.
J Transl Med
December 2024
Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Background: Ureaplasma urealyticum, Ureaplasma parvum, and Mycoplasma hominis were widely known as ammonia-producing microorganisms and can cause hyperammonemia, leading to cerebral edema and altered consciousness, which represent serious complications in lung transplant recipients. However, there is limited knowledge on the epidemiology and outcomes of infections caused by U. urealyticum, U.
View Article and Find Full Text PDFBMC Palliat Care
December 2024
Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.
Background: Patients with chronic nonmalignant pulmonary disease and lung cancer both need palliative care, but palliative care services may be better adjusted to serve cancer patients. We compared the timing and clinical practice of palliative care and acute hospital usage during the last year of life in patients with nonmalignant pulmonary disease or lung cancer.
Methods: This was a retrospective study of all patients in a palliative care phase (palliative goal of care) with nonmalignant pulmonary disease or lung cancer who were treated at Tampere University Hospital, Finland, during the years 2018-2020.
Respir Res
December 2024
Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Backgroud: Recent studies have reported mitochondrial damage and metabolic dysregulation in BPD, but the changes in mitochondrial dynamics and glucose metabolic reprogramming in ATII cells and their regulatory relationship have not been reported.
Methods: Neonatal rats in this study were divided into model (FIO2:85%) and control (FIO2: 21%) groups. Lung tissues were extracted at 3, 7, 10 and 14 postnatal days and then conducted HE staining for histopathological observation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!