A lattice model is described to explain a recent striking Sum Frequency Generation (SFG) observation of a cooperative surface adsorption effect for an organic acid system at an air-water interface. The reported anomalous pH-dependent enhancement in -methylbenzoic acid (mBA) arises from an interaction between the acid (HA) and its conjugate base anion (A), which competes with strong Coulombic repulsion between the conjugate bases (A-A ). Using a statistical mechanical approach, this lattice gas model reveals an analogy to well-studied magnetic systems in which the attraction between the two different molecular species leads to a phase transition to a two-dimensional checkerboard phase consisting of a network of anion-acid complexes formed at the low-dielectric air-water interface. Cooperative acid-anion interactions that control partitioning at solution and aerosol interfaces are of interest to fields ranging from oceanic and atmospheric chemistry, pharmacology, and chemical engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.1c02388DOI Listing

Publication Analysis

Top Keywords

air-water interface
12
phase transition
8
conjugate acid-base
4
acid-base interaction
4
interaction driven
4
driven phase
4
transition air-water
4
interface lattice
4
lattice model
4
model described
4

Similar Publications

Poly-N-isopropylacrylamide (PNIPAm), a thermorresponsive polymer, highly soluble in water below its lower critical solution temperature (LCST), is widely used in biomedical applications like drug delivery. Being able to measure PNIPAm size and aggregation state in solution quickly, inexpensively, and accurately below the LCST is critical when stoichiometric particle or molecular ratios are required. Dynamic light scattering (DLS) is probably the most widely available, and inexpensive nanoparticle sizing technique, but there are limitations with respect to sample polydispersity.

View Article and Find Full Text PDF

Meringue has limited the use of meringue for personalization because of its thermally unstable system. Citric acid (CA) enhancement of egg white protein (EWP) foaming properties is proposed for the preparation of 3D-printed meringues. The results showed that CA increased the viscosity, exposure of hydrophobic groups (79.

View Article and Find Full Text PDF

Release of poly- and perfluoroalkyl substances from AFFF-impacted soils: Effects of water saturation in vadose zone soils.

J Contam Hydrol

January 2025

Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA. Electronic address:

Soil samples collected from an aqueous film-forming foam (AFFF)-impacted sandy soil formation at two depth intervals above the water table were used in bench-scale column experiments to evaluate the release of poly- and perfluoroalkyl substances (PFASs) under different degrees of water saturation. Artificial rainwater was applied to the soils under constant and variably saturated conditions. Results from constant saturation experiments suggest that retention of PFAS mass at air-water interfaces was evident in the deep soil (f < 0.

View Article and Find Full Text PDF

Freestanding networked nanoparticle (NP) films hold substantial potential due to their high surface areas and customizable porosities. However, NPs with high surface energies and heterogeneous sizes or shapes present considerable challenges as they tend to aggregate, compromising their structural integrities. In this study, we report the scalable fabrication of ultrathin, bicontinuous, and densely packed carbon NP films via Pickering emulsion-mediated interfacial assembly.

View Article and Find Full Text PDF

An interface can be delicately designed using interactions between nanoparticles and surfactants by controlling surface properties such as activity and charge equilibrium. This study seeks to provide insights into how surfactant concentration impacts the stability and dynamics of nanoparticle-surfactant interfaces, with potential applications in material science and interface engineering. This study investigates the interactions between Graphene Function (Gr, Graphene function in this text refers to functionalizing the graphene sheets with -COOH groups via acidic reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!