Gallium Plasmonic Nanoantennas Unveiling Multiple Kinetics of Hydrogen Sensing, Storage, and Spillover.

Adv Mater

Group of Optics, Department of Applied Physics, Faculty of Sciences, University of Cantabria, Avda. Los Castros s/n, Santander, 39005, Spain.

Published: July 2021

Hydrogen is the key element to accomplish a carbon-free based economy. Here, the first evidence of plasmonic gallium (Ga) nanoantennas is provided as nanoreactors supported on sapphire (α-Al O ) acting as direct plasmon-enhanced photocatalyst for hydrogen sensing, storage, and spillover. The role of plasmon-catalyzed electron transfer between hydrogen and plasmonic Ga nanoparticle in the activation of those processes is highlighted, as opposed to conventional refractive index-change-based sensing. This study reveals that, while temperature selectively operates those various processes, longitudinal (LO-LSPR) and transverse (TO-LSPR) localized surface plasmon resonances of supported Ga nanoparticles open selectivity of localized reaction pathways at specific sites corresponding to the electromagnetic hot-spots. Specifically, the TO-LSPR couples light into the surface dissociative adsorption of hydrogen and formation of hydrides, whereas the LO-LSPR activates heterogeneous reactions at the interface with the support, that is, hydrogen spillover into α-Al O and reverse-oxygen spillover from α-Al O This Ga-based plasmon-catalytic platform expands the application of supported plasmon-catalysis to hydrogen technologies, including reversible fast hydrogen sensing in a timescale of a few seconds with a limit of detection as low as 5 ppm and in a broad temperature range from room-temperature up to 600 °C while remaining stable and reusable over an extended period of time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469318PMC
http://dx.doi.org/10.1002/adma.202100500DOI Listing

Publication Analysis

Top Keywords

hydrogen sensing
12
hydrogen
8
sensing storage
8
storage spillover
8
spillover α-al
8
gallium plasmonic
4
plasmonic nanoantennas
4
nanoantennas unveiling
4
unveiling multiple
4
multiple kinetics
4

Similar Publications

The use of hydrogen as fuel presents many safety challenges due to its flammability and explosive nature, combined with its lack of color, taste, and odor. The purpose of this paper is to present an electrochemical sensor that can achieve rapid and accurate detection of hydrogen leakage. This paper presents both the component elements of the sensor, like sensing material, sensing element, and signal conditioning, as well as the electronic protection and signaling module of the critical concentrations of H.

View Article and Find Full Text PDF

Gold-Mercury-Platinum Alloy for Light-Enhanced Electrochemical Detection of Hydrogen Peroxide.

Sensors (Basel)

December 2024

Center for Experimental Chemistry Education of Shandong University, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

In this study, a simple and easy synthesis strategy to realize the modification of AuHgPt nanoalloy materials on the surface of ITO glass at room temperature is presented. Gold nanoparticles as templates were obtained by electrochemical deposition, mercury was introduced as an intermediate to form an amalgam, and then a galvanic replacement reaction was utilized to successfully prepare gold-mercury-platinum (AuHgPt) nanoalloys. The obtained alloys were characterized by scanning electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction techniques.

View Article and Find Full Text PDF

Traditional Chinese Medicine Monomer Bakuchiol Attenuates the Pathogenicity of via Targeting PqsR.

Int J Mol Sci

December 2024

Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an 716000, China.

As the antibiotic resistance of pathogens becomes increasingly severe, it is becoming more feasible to use methods that suppress the virulence of pathogens rather than exerting selective pressure on their growth. , a dangerous opportunistic pathogen, infects hosts by producing multiple virulence factors, which are regulated by quorum-sensing (QS) systems, including the systems, systems, and systems. This study used the chromosome transcription fusion reporter model to screen the traditional Chinese medicine monomer library and found that bakuchiol can effectively inhibit the system and related virulence phenotypes of , including the production of virulence factors (pyocyanin, hydrogen cyanide, elastase, and lectin) and motility (swarming, swimming, and twitching motility) without affecting its growth.

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) is an emerging field with significant applications in molecular electronics, optical materials, and chiroptical sensing. Achieving efficient CPL emission in organic systems remains a major challenge, particularly in the development of materials with high fluorescence quantum yields (Φ) and large luminescence dissymmetry factors (g). Herein, we report the efficient synthesis of shape-persistent tetraphenylethylene macrocycles and investigate its potential as a CPL material.

View Article and Find Full Text PDF

Dimer Is Not Double: The Unexpected Behavior of Two-Floor Peptide Nanosponge.

Molecules

December 2024

Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.

Using the framework of an investigation of the stimuli-responsive behavior of peptide assembly on a solid surface, this study on the behavior of a chemisorbed peptide on a gold surface was performed. The studied peptide is a dimeric form of the antimicrobial peptide Trichogin GAIV, which was also modified by substituting the glycine with lysine residues, while the N-terminus octanoyl group was replaced by a lipoic one that was able to bind to the gold surface. In this way, a chemically linked peptide assembly that is pH-responsive was obtained because of the protonation/deprotonation of the sidechains of the Lys residues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!