Hypophosphatasia (HPP) is caused by loss-of-function mutations in the ALPL gene that encodes tissue-nonspecific alkaline phosphatase (TNAP), whose deficiency results in the accumulation of extracellular inorganic pyrophosphate (PP ), a potent mineralization inhibitor. Skeletal and dental hypomineralization characterizes HPP, with disease severity varying from life-threatening perinatal or infantile forms to milder forms that manifest in adulthood or only affect the dentition. Enzyme replacement therapy (ERT) using mineral-targeted recombinant TNAP (Strensiq/asfotase alfa) markedly improves the life span, skeletal phenotype, motor function, and quality of life of patients with HPP, though limitations of ERT include frequent injections due to a short elimination half-life of 2.28 days and injection site reactions. We tested the efficacy of a single intramuscular administration of adeno-associated virus 8 (AAV8) encoding TNAP-D to increase the life span and improve the skeletal and dentoalveolar phenotypes in TNAP knockout (Alpl ) mice, a murine model for severe infantile HPP. Alpl mice received 3 × 10 vector genomes/body of AAV8-TNAP-D within 5 days postnatal (dpn). AAV8-TNAP-D elevated serum ALP activity and suppressed plasma PP . Treatment extended life span of Alpl mice, and no ectopic calcifications were observed in the kidneys, aorta, coronary arteries, or brain in the 70 dpn observational window. Treated Alpl mice did not show signs of rickets, including bowing of long bones, enlargement of epiphyses, or fractures. Bone microstructure of treated Alpl mice was similar to wild type, with a few persistent small cortical and trabecular defects. Histology showed no measurable osteoid accumulation but reduced bone volume fraction in treated Alpl mice versus controls. Treated Alpl mice featured normal molar and incisor dentoalveolar tissues, with the exceptions of slightly reduced molar enamel and alveolar bone density. Histology showed the presence of cementum and normal periodontal ligament attachment. These results support gene therapy as a promising alternative to ERT for the treatment of HPP. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8446309 | PMC |
http://dx.doi.org/10.1002/jbmr.4382 | DOI Listing |
J Bone Miner Res
January 2025
Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.
We previously documented successful resolution of skeletal and dental disease in the infantile and late-onset murine models of hypophosphatasia (HPP), with a single injection of an adeno-associated serotype 8 vector encoding mineral-targeted TNAP (AAV8-TNAP-D10). Here, we conducted dosing studies in both HPP mouse models. A single escalating dose from 4x108 up to 4x1010 (vg/b) was intramuscularly injected into 4-day-old Alpl-/- mice (an infantile HPP model) and a single dose from 4x106 up to 4x109 (vg/b) was administered to 8-week-old AlplPrx1/Prx1 mice (a late-onset HPP model).
View Article and Find Full Text PDFPLoS One
January 2025
Ionis Pharmaceuticals, Inc., Carlsbad, CA, United States of America.
Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.
View Article and Find Full Text PDFBiomater Adv
March 2025
Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil. Electronic address:
Titanium (Ti) implant osseointegration is regulated by the crosstalk among bone cells that are affected by epigenetic machinery, including the regulation of long non-coding RNAs (lncRNAs). Nanotopography Ti (Ti Nano) induces the differentiation of osteoblasts that are inhibited by osteoclasts through epigenetic mechanisms. Thus, we hypothesize that osteoclasts affect lncRNA expression in Ti Nano-cultivated osteoblasts.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
November 2024
Department of Biological Sciences, Seton Hall University, South Orange, NJ, United States.
Three-dimensional cultures are widely used to study bone and cartilage. These models often focus on the interaction between osteoblasts and osteoclasts or osteoblasts and chondrocytes. A culture of osteoblasts, osteoclasts and chondrocytes would represent the cells that interact in the joint and a model with these cells could be used to study many diseases that affect the joints.
View Article and Find Full Text PDFBone
February 2025
Department of Orthopaedic Surgery, UConn Health, Farmington, CT, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, CT, USA.
Hajdu Cheney Syndrome (HCS), a monogenic disorder associated with NOTCH2 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia. To determine the consequences of a HCS pathogenic variant in human cells, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH2 mutation or null for HES1 alleles were created.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!