Herein, we report a systematic study of the adsorption behaviour of short oligo(ethylene glycol) (OEG) chains incorporated into poly(N-isopropylaccrylamide) (PNIPAM) microgels at the dodecane-water interface as a function of the microgel concentration at two different temperatures: 298 and 313 K. The dynamic interfacial tension of the interface for the adsorption of these functional microgels is measured by means of a pendent drop method. We find that similar to pure PNIPAM microgels, the functionalized microgels initially get transported from the bulk to the interface, where they undergo the deformability dependent spreading process, and thus leading to a reduction of interfacial tension. However, the OEG chains significantly influence the dynamic processes of the microgels at the interface, enabling precise control over the interfacial activity. A tuneability of adsorption behaviour that is interpreted in terms of the diversity of structural and morphological features of the microgels, can be achieved by changing the temperature and/or the OEG chain length of the comonomer. While the temperature induced phase transition generally slows down the adsorption kinetics of the microgels, increasing the temperature from 298 to 313 K allows faster reduction of interfacial tension for the adsorption of the microgels with long OEG chains among the studied comonomers, making them a unique interfacially active functional material. Overall, incorporation of OEG chains allows tailoring the interfacial activity of microgels, thereby paving the way for the use of these microgels to act as effective Pickering emulsion stabilizers in a range of applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1sm00146aDOI Listing

Publication Analysis

Top Keywords

oeg chains
16
interfacial tension
12
microgels
11
short oligoethylene
8
oligoethylene glycol
8
adsorption behaviour
8
pnipam microgels
8
298 313
8
reduction interfacial
8
interfacial activity
8

Similar Publications

The efficiency of kinase inhibiting cancer therapeutics is often limited by their poor solubility in water. PEGylation is one possible strategy to improve the solubility of the drug, however, means to cleave these after reaching the target is important to make use of the therapeutic effects of the native drug. Moreover, the length of the PEG chains will have an effect on the solubility and binding.

View Article and Find Full Text PDF

Amphiphilic supramolecular materials based on biodegradable cyclodextrins (CDs) have been known to self-assemble into different types of thermotropic liquid crystals, including smectic and hexagonal columnar mesophases. Previous studies on amphiphilic CDs bearing 14 aliphatic chains at the secondary face and 7 oligoethylene glycol (OEG) chains at the primary face showed that the stability of the mesophase can be rationally tuned through implementation of terminal functional groups to the OEG chains. Here, we report the syntheses of first examples of crown ether-functionalized amphiphilic cyclodextrins that unexpectedly form thermotropic bicontinuous cubic phases.

View Article and Find Full Text PDF

Hierarchical assembly of thermoresponsive helical dendronized poly(phenylacetylene)s through photo-crosslinking of the thermal aggregates.

J Colloid Interface Sci

January 2025

International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China.

Supramolecular assembly of helical homopolymers to form stable chiral entities in water is highly valuable for creating chiral nanostructures and fabricating chiral biomaterials. Here we report on thermally induced supramolecular assembly of helical dendronized poly(phenylacetylene)s (PPAs) in aqueous solutions, and their in-situ photo-crosslinking at elevated temperatures to afford crosslinked nano-assemblies with hierarchical structures and stabilized helicities. These helical dendronized homopolymers carry cinnamate-cored dendritic oligoethylene glycol (OEG) pendants, which exhibit characteristic thermoresponsive behavior.

View Article and Find Full Text PDF

Alternating Graft Copolymer Carrying PLA Graft Chains at Every Other Unit: Sequence Impacts on Crystallization Behaviors.

ACS Macro Lett

August 2024

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.

Alternating graft copolymers were precisely synthesized via selective cyclopolymerization of pendant-transformable divinyl monomer (), post-polymerization modification via aminolysis with alkylamine, and ring-opening polymerization of l-lactide (LLA) from the hydroxy pendant group in alternating sequence. The poly(LLA) (PLLA) graft chain on the alternating copolymer gave a higher crystallization degree on the isothermal treatment than that on the random counterpart likely because of the periodic sequence. The comonomer pendant group from alkylamine in the aminolysis reaction in the alternating sequence affected the crystallization behaviors, and the oligoethylene glycol (OEG) group promoted the crystallization thanks to the larger free volume effect.

View Article and Find Full Text PDF

Side-chain engineering in molecular semiconductors provides a versatile toolbox for precisely manipulating the material's processability, crystallographic properties, as well as electronic and optoelectronic characteristics. This study explores the impact of integrating hydrophilic side chains, specifically oligoethylene glycol (OEG) units, into the molecular structure of the small molecule semiconductor, 2,7-bis(2(2-methoxy ethoxy)ethoxy) benzo[]benzo[4,5] thieno[2,3-] thiophene (OEG-BTBT). The investigation includes a comprehensive analysis of thin film morphology and crystallographic properties, along with the optimization of deposition parameters for improving the device performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!