High spliceosome activity is a dependency for cancer cells, making them more vulnerable to perturbation of the splicing machinery compared to normal cells. To identify splicing factors important for prostate cancer (PCa) fitness, we performed pooled shRNA screens in vitro and in vivo. Our screens identified heterogeneous nuclear ribonucleoprotein M (HNRNPM) as a regulator of PCa cell growth. RNA- and eCLIP-sequencing identified HNRNPM binding to transcripts of key homeostatic genes. HNRNPM binding to its targets prevents aberrant exon inclusion and backsplicing events. In both linear and circular mis-spliced transcripts, HNRNPM preferentially binds to GU-rich elements in long flanking proximal introns. Mimicry of HNRNPM-dependent linear-splicing events using splice-switching-antisense-oligonucleotides was sufficient to inhibit PCa cell growth. This suggests that PCa dependence on HNRNPM is likely a result of mis-splicing of key homeostatic coding and non-coding genes. Our results have further been confirmed in other solid tumors. Taken together, our data reveal a role for HNRNPM in supporting cancer cell fitness. Inhibition of HNRNPM activity is therefore a potential therapeutic strategy in suppressing growth of PCa and other solid tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346284 | PMC |
http://dx.doi.org/10.7554/eLife.59654 | DOI Listing |
EMBO J
December 2024
Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.
The cytosolic nucleic acid sensors RIG-I and cGAS induce type-I interferon (IFN)-mediated immune responses to RNA and DNA viruses, respectively. So far no connection between the two cytosolic pathways upstream of IKK-like kinase activation has been investigated. Here, we identify heterogeneous nuclear ribonucleoprotein M (hnRNPM) as a positive regulator of IRF3 phosphorylation and type-I IFN induction downstream of both cGAS and RIG-I.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
Transfer RNA halves (tRHs) have various biological functions. However, the biogenesis of specific 5'-tRHs under certain conditions remains unknown. Here, we report that inositol-requiring enzyme 1α (IRE1α) cleaves the anticodon stem-loop region of tRNA to produce 5'-tRHs (5'-tRH-Gly) with highly selective target discrimination upon endoplasmic reticulum (ER) stress.
View Article and Find Full Text PDFRedox Biol
November 2024
Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China. Electronic address:
J Gastrointest Oncol
August 2024
Department of Oncology, Yangzhou Hongquan Hospital, Yangzhou, China.
Background: Prior studies indicate that lactylation regulates various biological mechanisms within cancer. However, lactylation-related genes (LRGs) have been found to have limited value in predicting the prognosis of hepatocellular carcinoma (HCC). The aim of this study was to review HCC LRGs using data from The Cancer Genome Atlas (TCGA).
View Article and Find Full Text PDFJ Gastrointest Oncol
August 2024
Moffitt Cancer Center, Tampa, FL, USA.
Background: Disulfidptosis regulate various biological processes in cancer. However, there is limited research on the genes related to disulfidptosis in predicting the prognosis of hepatocellular carcinoma (HCC). We aimed to develop a reliable disulfidptosis-related gene signature, which will characterize different HCC subtypes and predict their prognosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!