It has been proposed that statistical integration of multisensory cues may be a suitable framework to explain temporal binding, that is, the finding that causally related events such as an action and its effect are perceived to be shifted towards each other in time. A multisensory approach to temporal binding construes actions and effects as individual sensory signals, which are each perceived with a specific temporal precision. When they are integrated into one multimodal event, like an action-effect chain, the extent to which they affect this event's perception depends on their relative reliability. We test whether this assumption holds true in a temporal binding task by manipulating certainty of actions and effects. Two experiments suggest that a relatively uncertain sensory signal in such action-effect sequences is shifted more towards its counterpart than a relatively certain one. This was especially pronounced for temporal binding of the action towards its effect but could also be shown for effect binding. Other conceptual approaches to temporal binding cannot easily explain these results, and the study therefore adds to the growing body of evidence endorsing a multisensory approach to temporal binding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550101 | PMC |
http://dx.doi.org/10.3758/s13414-021-02314-0 | DOI Listing |
New Phytol
January 2025
Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
Temporal decline in microRNA miR156 expression is crucial for the transition to, and maintenance of, the adult phase and flowering competence in flowering plants. However, the molecular mechanisms underlying the temporal regulation of miR156 reduction remain largely unknown. Here, we investigated the epigenetic mechanism regulating the temporal silencing of cin-MIR156 in wild chrysanthemum (Chrysanthemum indicum), focusing on the role of the lysine-specific demethylase CiLDL1 and the nuclear factor Y complex.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Rheumatology and Immunology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China.
Previous research suggests mitochondrial apoptosis alleviates rheumatoid arthritis (RA), but the role of mitochondrial apoptosis-related genes (MARGs) is unclear. Urgent exploration of RA-related mitochondrial apoptosis biomarkers is needed. Gene Expression Ontology (GEO)-derived RA datasets were used to identify differentially expressed genes (DEGs) compared to normal controls, intersected with MARGs to obtain differentially expressed mitochondrial apoptosis-related genes (DE-MARGs).
View Article and Find Full Text PDFJ Nucl Med
January 2025
Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts;
Spinal cord injuries (SCIs) often lead to lifelong disability. Among the various types of injuries, incomplete and discomplete injuries, where some axons remain intact, offer potential for recovery. However, demyelination of these spared axons can worsen disability.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, UCL, London, WC1N 3BG, UK.
Approximately 40% of individuals undergoing anterior temporal lobe resection for temporal lobe epilepsy experience episodic memory decline. There has been a focus on early memory network changes; longer-term plasticity and its impact on memory function are unclear. Our study investigates neural mechanisms of memory recovery and network plasticity over nearly a decade post-surgery.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan.
Background: Postprandial hyperglycemia induces expression of inflammatory cytokines including tumor necrosis factor (TNF), which promotes the onset of type 2 diabetes and cardiovascular diseases. In this study, we investigated whether a transient high-glucose culture enhanced sustained expression of TNF, or whether the induction is associated with histone acetylation, and bromodomain protein containing protein 4 (BRD4), which binds acetylated histone, in human juvenile macrophage-like THP-1 cells.
Methods: THP-1 cells were cultured in medium with high-glucose in the presence or absence of (+)-JQ1, an inhibitor of bromodomain and extra-terminal domain family, for 24 h (day 0).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!