Due the current pandemic of COVID-19, an urgent need is required for serious medical treatments of a huge number of patients. The world health organization (WHO) approved Favipiravir (FAV) as a medication for patients infected with corona virus. In the current study, we report the first simple electrochemical, greatly sensitive sensor using MnO-rGO nanocomposite for the accurate determination of Favipiravir (FAV). The developed sensor showed a high improvement in the electrochemical oxidation of FAV comparing to the unmodified screen-printed electrode (SPE). The suggested platform constituents and the electrochemical measurements parameters were studied. Under optimal experimental parameters, a current response to the concentration change of FAV was found to be in the linear range of 1.0 × 10-5.5 × 10 M at pH 7.0 with a limit of detection 0.11 µM and a quantification limit of 0.33 µM. The developed platform was confirmed by the precise analysis of FAV in real samples including dosage form and plasma. The developed platform can be applied in different fields of industry quality control and clinical analysis laboratories for the FAV determination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161794 | PMC |
http://dx.doi.org/10.1016/j.jelechem.2021.115422 | DOI Listing |
BMC Chem
January 2025
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nile Valley University (NVU), El Fayoum, 63518, Egypt.
Coronavirus disease 2019 (COVID-19), an extremely contagious illness, has posed enormous challenges to healthcare systems around the world. Although the evidence on COVID-19 management is growing, antiviral medication is still the first line of treatment. Therefore, it is critical that effective, safe, and tolerable antivirals be available to treat early COVID-19 and stop its progression.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Telomerase enzyme prevents telomere shortening during division, having human telomerase reverse transcriptase (hTERT) as its catalytic subunit. Favipiravir (FAV), an RNA-dependent RNA polymerases inhibitor, shared structural similarity with hTERT and thus assumed to have cytotoxic effect on cancer cells, in addition to its prophylactic effect to immunocompromised cancer patients. Nanoemulsion (NE) is a potential tumor cells targeting delivery system, thereby enhancing therapeutic efficacy at the intended site, mitigating systemic toxicity, and overcoming multidrug resistance.
View Article and Find Full Text PDFJ Fluoresc
October 2024
Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
A simple and facile microwave-assisted method was developed for the synthesis of highly fluorescent silver-nanoparticles (Ag-NPs). The synthesis of silver-nanoparticles depends on a redox reaction between silver nitrate and ascorbic acid using chitosan as a stabilizing agent. The produced Ag-NPs were characterized using Zeta potential and transmission electron microscope micrograph where they are spherical in shape with smooth surface morphology and size of 26.
View Article and Find Full Text PDFPLoS Pathog
September 2024
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
A diverse group of RNA viruses have the ability to gain access to the central nervous system (CNS) and cause severe neurological disease. Current treatment for people with this type of infection is generally limited to supportive care. To address the need for reliable antivirals, we utilized a strategy of lethal mutagenesis to limit virus replication.
View Article and Find Full Text PDFSci Total Environ
November 2024
Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!