Treatment of grating stimulation has been used in amblyopia for decades, but high dropout rate and inconvenience for daily practice occur in previous studies. We developed a home-based portable system with rotating grating stimulation on a tablet. Thirty anisometropic amblyopic children were randomly allocated into the control or Grating group. They drew contour of the picture under patch of a better eye for 6 months. Best-corrected visual acuity (BCVA), grating acuity (GA), and contrast sensitivity (CS) were assessed at the baseline, 1st, 2nd, 3rd, and 6th months of training. All participants completed the 6-month training. Patched eyes of both groups exhibited no difference. Trained eyes of the control group had significantly slight improvement in BCVA and GA. In particular, the Grating group exhibited significantly higher BCVA, GA, and CS compared with those of the control group at the 3rd and 6th months of training. Moreover, percentage of the Grating group with great improvement (BCVA ≥ 0.3 or CS ≥ 0.3) was significantly larger than those of the control group at the 3rd or 6th months of training. The portable grating stimulation system demonstrates its trainability by no dropout and effectiveness by significant improvements in all assessments through a well experimental design.Trial Registration: ClinicalTrials.gov NCT04213066, registered 30/12/2019, https://clinicaltrials.gov/ct2/show/NCT04213066 .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8169940 | PMC |
http://dx.doi.org/10.1038/s41598-021-90936-7 | DOI Listing |
In brain activity mapping with optogenetics, patterned illumination is crucial for targeted neural stimulation. However, due to optical scattering in brain tissue, light-emitting implants are needed to bring patterned illumination to deep brain regions. A promising solution is silicon neural probes with integrated nanophotonic circuits that form tailored beam patterns without lenses.
View Article and Find Full Text PDFJ Neurosci
December 2024
IISc Mathematics Initiative, Department of Mathematics, Indian Institute of Science, Bangalore, India, 560012
Gamma rhythm (30-70 Hz), thought to represent the interactions between excitatory and inhibitory populations, can be induced by presenting achromatic gratings in the primary visual cortex (V1) and is sensitive to stimulus properties such as size and contrast. In addition, gamma occurs in short bursts, and shows a "frequency-falloff" effect where its peak frequency is high after stimulus onset and slowly decreases to a steady state. Recently, these size-contrast properties and temporal characteristics were replicated in a self-oscillating Wilson-Cowan (WC) model operating as an Inhibition stabilized network (ISN), stimulated by Ornstein-Uhlenbeck (OU)-type inputs.
View Article and Find Full Text PDFCell Rep
December 2024
Neuro-Electronics Research Flanders, 3000 Leuven, Belgium; Department of Biology & Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; VIB, 3000 Leuven, Belgium. Electronic address:
Behavioral influences shape processing in the retina and the dorsal lateral geniculate nucleus (dLGN), although their precise effects on visual tuning remain debated. Using 2-photon functional Ca imaging, we characterize the dynamics of dLGN axon activity in the primary visual cortex of awake behaving mice, examining the effects of visual stimulation, pupil size, stillness, locomotion, and anesthesia. In awake recordings, nasal visual motion triggers pupil dilation and, occasionally, locomotion, increasing responsiveness and leading to an overrepresentation of boutons tuned to nasal motion.
View Article and Find Full Text PDFJ Vis
December 2024
Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE.
J Vis
December 2024
Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
Manipulations of the strength of visual motion coherence have been widely used to study behavioral and neural mechanisms of visual motion processing. Here, we used a novel broadband visual stimulus to test how the strength of motion coherence in different spatial frequency (SF) bands impacts human ocular-following responses (OFRs). Synthesized broadband stimuli were used: a sum of one-dimensional vertical sine-wave gratings (SWs) whose SFs ranged from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!