Diverse cognitive processes set different demands on locally segregated and globally integrated brain activity. However, it remains an open question how resting brains configure their functional organization to balance the demands on network segregation and integration to best serve cognition. Here we use an eigenmode-based approach to identify hierarchical modules in functional brain networks and quantify the functional balance between network segregation and integration. In a large sample of healthy young adults (n = 991), we combine the whole-brain resting state functional magnetic resonance imaging (fMRI) data with a mean-filed model on the structural network derived from diffusion tensor imaging and demonstrate that resting brain networks are on average close to a balanced state. This state allows for a balanced time dwelling at segregated and integrated configurations and highly flexible switching between them. Furthermore, we employ structural equation modeling to estimate general and domain-specific cognitive phenotypes from nine tasks and demonstrate that network segregation, integration, and their balance in resting brains predict individual differences in diverse cognitive phenotypes. More specifically, stronger integration is associated with better general cognitive ability, stronger segregation fosters crystallized intelligence and processing speed, and an individual's tendency toward balance supports better memory. Our findings provide a comprehensive and deep understanding of the brain's functioning principles in supporting diverse functional demands and cognitive abilities and advance modern network neuroscience theories of human cognition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201916 | PMC |
http://dx.doi.org/10.1073/pnas.2022288118 | DOI Listing |
During the first cell fate decision in mammalian embryos the inner cell mass cells, which will give rise to the embryo proper and other extraembryonic tissues, segregate from the trophectoderm cells, the precursors of the placenta. Cell fate segregation proceeds in a gradual manner encompassing two rounds of cell division, as well as cell positional and morphological changes. While it is known that the activity of the Hippo signaling pathway and the subcellular localization of its downstream effector YAP dictate lineage specific gene expression, the response of YAP to these dynamic cellular changes remains incompletely understood.
View Article and Find Full Text PDFFemale reproductive aging is accompanied by a dramatic rise in the incidence of egg aneuploidy. Premature loss of chromosome cohesion proteins and untimely separation of chromosomes is thought to underly high rates egg aneuploidy during maternal aging. However, because chromosome cohesion loss occurs gradually over female reproductive lifespan and cytoskeletal defects alone can predispose eggs to chromosomal abnormalities, the root causes of exponential rise in egg aneuploidy at advanced reproductive ages remain a mystery.
View Article and Find Full Text PDFSmall
March 2025
School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.
In bioanalysis, precisely isolating liquid reactions in distinct systems or at different temporal sequences is vital for ensuring accurate results devoid of crosstalk. However, passive liquid isolation is unattainable through existing microfluidic valves. Here, liquid bridge cutting valves (LBCVs) are introduced to automatically segregate liquids by establishing airlocks, offering an innovative microfluidic structure for liquid distribution.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2025
Northeast Forestry University, Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, CHINA.
As the emergence of prototissues promotes the evolutionary transformations of protolife, tissue-like networks derived from cytomimetic systems have been studied by using artificial cells as building blocks to mimic prototissues at a higher-organizational level. However, liquid-like networks originating from liquid-liquid phase separation (LLPS), especially heterogeneous LLPS, are less reported. Herein we report a binary liquid droplet-based protocell network composed of coacervates and aqueous two-phase systems (ATPS) droplets arranged in an alternating sequence, integrating both associative and segregative LLPS.
View Article and Find Full Text PDFJ Am Coll Clin Pharm
January 2025
Department of Pharmacy Practice, Purdue University College of Pharmacy, Indianapolis, Indiana, USA.
Type 2 diabetes (T2D) affects over 38 million Americans, leading to significant health complications and substantial healthcare costs. Novel antidiabetic medications, such as SGLT2 inhibitors and GLP-1 receptor agonists, have shown promise in improving glycemic control and reducing cardiovascular risks. However, their underuse, particularly among minority populations, remains a concern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!