Characterizing the pharmacokinetic properties of drug candidates represents an essential task during drug development. In the past, liver microsomes and primary suspended hepatocytes have been extensively used for this purpose, but their relatively short stability limits the applicability of such systems for drug compounds with low metabolic turnover. In the present study, we used 3D primary human hepatocyte spheroids to predict the hepatic clearance of seven drugs with low to intermediate clearance in humans. Our results indicate that hepatocyte spheroids maintain their like phenotype during prolonged incubations allowing to monitor the depletion of parent drug for seven days. In contrast, attempts to increase the relative metabolic capacity by pooling hepatocyte spheroids resulted in an immediate fusion of the spheroids followed by hepatocellular de-differentiation processes, demonstrating limited applicability of the pooling approach for quantitative pharmacokinetic studies. The hepatic clearance values obtained from incubations with individual spheroids were in close correlation with the clinical reference data with six out of seven drug compounds being predicted within a three-fold deviation and average fold and absolute average fold errors of 0.57 and 1.74, respectively. In conclusion, the hepatocyte spheroid model enables accurate hepatic clearance predictions for slowly metabolized drug compounds and represents a valuable tool for determining the pharmacokinetic properties of new drug candidates as well as for mechanistic pharmacokinetic studies. Traditional in vitro systems often fail to predict the hepatic clearance of slowly metabolized drug compounds. The current study demonstrates the ability of primary human hepatocyte spheroids to provide accurate projections on the hepatic clearance of drug compounds with low and intermediate clearance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.120.000340 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Hepatobiliary Surgery, The Third Central Hospital of Tianjin, Tianjin, China.
Background: In patients with advanced hepatocellular carcinoma (HCC) following sorafenib failure, regorafenib has been used as an initial second-line drug. It is unclear the real efficacy and safety of sorafenib-regorafenib sequential therapy compared to placebo or other treatment (cabozantinib or nivolumab or placebo) in advanced HCC.
Methods: Four electronic databases (PubMed, Embase, Web of Science, and Ovid) were systematically searched for eligible articles from their inception to July, 2024.
Medicine (Baltimore)
January 2025
Anorectal Department, People's Hospital of Leshan, Leshan, Sichuan, China.
Background: This study evaluates the efficacy of a novel bismuth subgallate-borneol compound ointment as an adjuvant therapy in promoting postoperative healing of infectious incisions after anorectal surgery.
Methods: From June 2023 to October 2023, 46 patients with perianal abscess and anal fistula treated at our institution's Anorectal Surgery Department were enrolled in this prospective randomized controlled study. Patients were randomly allocated into 2 groups: the experimental group (n = 23) received conventional wound care plus a proprietary ointment containing 4.
PLoS One
January 2025
Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
Three endophytic strains, Phomopsis sp., Fusarium proliferatum, and Tinctoporellus epimiltinus, isolated from various plants in the rainforest of the Philippines, were investigated regarding their ability to repress growth of the pathogenic fungus Colletotrichum musae on banana fruits causing anthracnose disease. An in vitro plate-to-plate assay and an in vivo sealed box assay were conducted, using commercial versus natural potato dextrose medium (PDA).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
Myelination is a key biological process wherein glial cells such as oligodendrocytes wrap myelin around neuronal axons, forming an insulative sheath that accelerates signal propagation down the axon. A major obstacle to understanding myelination is the challenge of visualizing and reproducibly quantifying this inherently three-dimensional process in vitro. To this end, we previously developed artificial axons (AAs), a biocompatible platform consisting of 3D-printed hydrogel-based axon mimics designed to more closely recapitulate the micrometer-scale diameter and sub-kilopascal mechanical stiffness of biological axons.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
A common heavy metal in many facets of daily life is aluminum (AlCl3), which can be found in food, toothpaste, cosmetics, food additives, and numerous pharmaceutical items. The hippocampus, liver, and kidneys have the highest concentrations of this powerful neurotoxin, which also accumulates over time and contributes to the development of a number of cognitive disorders. Long-term overconsumption of AlCl3 results in hepatic and renal toxicity as well as neuronal inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!