Jojoba is a widely used medicinal plant that is cultivated worldwide. Its seeds and oil have a long history of use in folklore to treat various ailments, such as skin and scalp disorders, superficial wounds, sore throat, obesity, and cancer; for improvement of liver functions, enhancement of immunity, and promotion of hair growth. Extensive studies on Jojoba oil showed a wide range of pharmacological applications, including antioxidant, anti-acne and antipsoriasis, anti-inflammatory, antifungal, antipyretic, analgesic, antimicrobial, and anti-hyperglycemia activities. In addition, Jojoba oil is widely used in the pharmaceutical industry, especially in cosmetics for topical, transdermal, and parenteral preparations. Jojoba oil also holds value in the industry as an anti-rodent, insecticides, lubricant, surfactant, and a source for the production of bioenergy. Jojoba oil is considered among the top-ranked oils due to its wax, which constitutes about 98% (mainly wax esters, few free fatty acids, alcohols, and hydrocarbons). In addition, sterols and vitamins with few triglyceride esters, flavonoids, phenolic and cyanogenic compounds are also present. The present review represents an updated literature survey about the chemical composition of jojoba oil, its physical properties, pharmacological activities, pharmaceutical and industrial applications, and toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197201 | PMC |
http://dx.doi.org/10.3390/polym13111711 | DOI Listing |
Sci Rep
January 2025
Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo, 12622, Egypt.
Food commodities, including mycotoxins naturally produced from toxigenic fungi (pre- or post-harvest), are particularly vulnerable to contamination. The study intended to use unique bioactive composites loaded with antimicrobial constituents for food packaging. Three composite types are based on carboxymethyl cellulose/shellac (CMC/SH) and loaded with pomegranate extract (POE) with or without jojoba oil (JOE) at various concentrations.
View Article and Find Full Text PDFJMIR Form Res
December 2024
Department of Environmental, Occupational, and Geospatial Health Sciences, Graduate School of Public Health and Health Policy, City University of New York, New York, NY, United States.
Background: Legacy media are publications that existed before the internet. Many of these have migrated to a web format, either replacing or in parallel to their print issues. Readers place an economic value on access to the information presented as they pay for subscriptions and place a higher degree of trust in their content.
View Article and Find Full Text PDFACS Omega
November 2024
Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia.
Plant-based oils, such as coconut, olive, argan, and jojoba, are abundant in natural emollients and vital fatty acids that hydrate and moisturize the skin. They shield the surface, stop moisture loss, and maintain suppleness of, the skin. They are rich in vitamins, nutrients, and antioxidants that nourish the skin.
View Article and Find Full Text PDFInt J Nanomedicine
November 2024
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, 4410240, Egypt.
Introduction: Atorvastatin (ATV), a medication used to reduce cholesterol levels, possesses properties that can counteract the damaging effects of free radicals and reduce inflammation. However, the administration of ATV orally is associated with low systemic bioavailability due to its limited capacity to dissolve in water and significant first-pass effect. This study aimed to assess the appropriateness of employing nano-vesicles for transdermal administration of ATV in order to enhance its anti-inflammatory effects.
View Article and Find Full Text PDFSoft Matter
November 2024
Department of Chemical Engineering, University College London, London, UK.
This work investigates the design of stimuli-responsive Pickering emulsions (PEs) for transdermal drug delivery applications, by exploring the impact of stabilising microgels size and interactions on their rheological and release properties. Temperature-responsive poly(-isopropylacrylamide) microgels modified with 1-benzyl-3-vinylimidazolium bromide (pNIPAM--BVI) are synthesized in varying sizes and used to stabilise jojoba oil-in-water concentrated emulsions. The results reveals two distinct behaviours: for small microgels (∼300 nm), the PEs exhibit a smooth, uniform structure characterised by a mild yield stress, characteristic of soft glassy systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!