Machine learning (ML) algorithms have been applied to predicting coronary artery disease (CAD). Our purpose was to utilize autoantibody isotypes against four different unmodified and malondialdehyde (MDA)-modified peptides among Taiwanese with CAD and healthy controls (HCs) for CAD prediction. In this study, levels of MDA, MDA-modified protein (MDA-protein) adducts, and autoantibody isotypes against unmodified peptides and MDA-modified peptides were measured with enzyme-linked immunosorbent assay (ELISA). To improve the performance of ML, we used decision tree (DT), random forest (RF), and support vector machine (SVM) coupled with five-fold cross validation and parameters optimization. Levels of plasma MDA and MDA-protein adducts were higher in CAD patients than in HCs. IgM anti-IGKC MDA and IgM anti-A1AT MDA decreased the most in patients with CAD compared to HCs. In the experimental results of CAD prediction, the decision tree classifier achieved an area under the curve (AUC) of 0.81; the random forest classifier achieved an AUC of 0.94; the support vector machine achieved an AUC of 0.65 for differentiating between CAD patients with stenosis rates of 70% and HCs. In this study, we demonstrated that autoantibody isotypes imported into machine learning algorithms can lead to accurate models for clinical use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229983PMC
http://dx.doi.org/10.3390/diagnostics11060961DOI Listing

Publication Analysis

Top Keywords

machine learning
12
coronary artery
12
autoantibody isotypes
12
predicting coronary
8
artery disease
8
learning algorithms
8
isotypes unmodified
8
mda-modified peptides
8
cad prediction
8
mda-protein adducts
8

Similar Publications

Background: Epidemiological research on the association between heavy metals and congestive heart failure (CHF) in individuals with abnormal glucose metabolism is scarce. The study addresses this research gap by examining the link between exposure to heavy metals and the odds of CHF in a population with dysregulated glucose metabolism.

Method: This cross-sectional study includes 7326 patients with diabetes and prediabetes from the National Health and Nutrition Examination Survey from 2011 to 2018.

View Article and Find Full Text PDF

Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.

Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.

View Article and Find Full Text PDF

Background: Urinary tract infection (UTI) is a frequent health-threatening condition. Early reliable diagnosis of UTI helps to prevent misuse or overuse of antibiotics and hence prevent antibiotic resistance. The gold standard for UTI diagnosis is urine culture which is a time-consuming and also an error prone method.

View Article and Find Full Text PDF

A machine learning model accurately identifies glycogen storage disease Ia patients based on plasma acylcarnitine profiles.

Orphanet J Rare Dis

January 2025

Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Postbus, Groningen, 30001 - 9700 RB, the Netherlands.

Background: Glycogen storage disease (GSD) Ia is an ultra-rare inherited disorder of carbohydrate metabolism. Patients often present in the first months of life with fasting hypoketotic hypoglycemia and hepatomegaly. The diagnosis of GSD Ia relies on a combination of different biomarkers, mostly routine clinical chemical markers and subsequent genetic confirmation.

View Article and Find Full Text PDF

Background: Steroid-induced osteonecrosis of the femoral head (SIONFH) is a universal hip articular disease and is very hard to perceive at an early stage. The understanding of the pathogenesis of SIONFH is still limited, and the identification of efficient diagnostic biomarkers is insufficient. This research aims to recognize and validate the latent exosome-related molecular signature in SIONFH diagnosis by employing bioinformatics to investigate exosome-related mechanisms in SIONFH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!