Programmed death-ligand 1 protein (PD-L1) has been posited to have a major role in suppressing the immune system during pregnancy, tissue allografts, autoimmune disease and other diseases, such as hepatitis. Photodynamic therapy uses light and a photosensitizer to generate singlet oxygen, which causes cell death (phototoxicity). In this work, photosensitizers (such as merocyanine) were immobilized on the surface of magnetic nanoparticles. One peptide sequence from PD-L1 was used as the template and imprinted onto poly(ethylene--vinyl alcohol) to generate magnetic composite nanoparticles for the targeting of PD-L1 on tumor cells. These nanoparticles were characterized using dynamic light scattering, high-performance liquid chromatography, Brunauer-Emmett-Teller analysis and superconducting quantum interference magnetometry. Natural killer-92 cells were added to these composite nanoparticles, which were then incubated with human hepatoma (HepG2) cells and illuminated with visible light for various periods. The viability and apoptosis pathway of HepG2 were examined using a cell counting kit-8 and quantitative real-time polymerase chain reaction. Finally, treatment with composite nanoparticles and irradiation of light was performed using an animal xenograft model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228393 | PMC |
http://dx.doi.org/10.3390/ph14060508 | DOI Listing |
Nanoscale
January 2025
Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
The development of environmentally friendly, high-efficiency, stable, earth-abundant and non-precious metal-based electrocatalysts with fast kinetics and low overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of exceeding significance but still challenging. Herein, a bifunctional electrode of unique hierarchical NiFe-LDH/Ni/NiCoS/NF (NiFe-LDH = nickel-iron layered double hydroxide and NF = nickel foam) electrocatalytic architecture, which is built up from NiFe-LDH nanosheets, Ni nanoparticles and NiCoS nanoneedles sequentially arrayed on a porous NF substrate, has been prepared by a facile hydrothermal and electrodeposition method. This electrocatalytic architecture is binder-free and its outer NiFe-LDH nanosheets can effectively prevent the oxidation of inner Ni nanoparticles and corrosion of NiCoS nanoneedles during water electrolysis.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.
High-entropy metal oxides (HEOs) have recently received growing attention for broad energy conversion and storage applications due to their tunable properties. HEOs typically involve the combination of multiple metal cations in a single oxide lattice, thus bringing distinctive structures, controllable elemental composition, and tunable functional properties. Many synthesis methods for HEOs have been reported, such as solid-state reactions and carbon thermal shock methods.
View Article and Find Full Text PDFACS Appl Nano Mater
March 2024
Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Photon-counting mammography is an emerging modality that allows for spectral imaging and provides a differentiation of material compositions. The development of photon-counting mammography-specific contrast agents has yet to be explored. In this study, the contrast, sensitivity, and organ dose between silver sulfide nanoparticles (AgS-NPs) and a clinically approved iodinated agent (iopamidol) were investigated using a contrast-embedded gradient ramp phantom and a prototype scanner.
View Article and Find Full Text PDFACS Appl Polym Mater
January 2025
School of Engineering and Materials Sciences, Queen Mary University of London, London, E1 4NS, U.K.
Inverse vulcanization (IV) enables the production of sustainable polymer from sulfur waste, offering hydrophobic, fluorine-free, and superhydrophobic coatings. However, these materials need adhesion improvements for enhanced durability. This study has developed an epoxy-, fluorine-, and metal-free superhydrophobic coating using the spray-coating of carbon nanofibers (CNFs), silica nanoparticles, and IV polymers on glass.
View Article and Find Full Text PDFAchieving the smallest crystallite/particle size of zinc oxide nanoparticles (ZnO NPs) reported to date, measuring 5.2/12.41 nm with () leaf extract, this study introduces a facile green synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!