Two Fascinating Polysaccharides: Chitosan and Starch. Some Prominent Characterizations for Applying as Eco-Friendly Food Packaging and Pollutant Remover in Aqueous Medium. Progress in Recent Years: A Review.

Polymers (Basel)

Grupo de Investigación en Energía y Procesos Sustentables, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel 8900000, Chile.

Published: May 2021

AI Article Synopsis

  • There is an urgent need to shift towards biodegradable and eco-friendly materials, particularly biopolymers like chitosan and starch.
  • The physical characterization of these biopolymers is crucial for their effective application in various fields.
  • This review examines studies on chitosan and starch from 2017 onwards, highlighting their roles in food packaging and as adsorbents for pollutants in water.

Article Abstract

The call to use biodegradable, eco-friendly materials is urgent. The use of biopolymers as a replacement for the classic petroleum-based materials is increasing. Chitosan and starch have been widely studied with this purpose: to be part of this replacement. The importance of proper physical characterization of these biopolymers is essential for the intended application. This review focuses on characterizations of chitosan and starch, approximately from 2017 to date, in one of their most-used applications: food packaging for chitosan and as an adsorbent agent of pollutants in aqueous medium for starch.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198307PMC
http://dx.doi.org/10.3390/polym13111737DOI Listing

Publication Analysis

Top Keywords

chitosan starch
12
food packaging
8
aqueous medium
8
fascinating polysaccharides
4
chitosan
4
polysaccharides chitosan
4
starch
4
starch prominent
4
prominent characterizations
4
characterizations applying
4

Similar Publications

Current Positron Studies on the Modifications of the Molecular Packing in Green-Based Polymers Through Changes in the Synthesis Procedures or Environmental Conditions.

Polymers (Basel)

December 2024

Positron Group "Prof. Alfredo Dupasquier", Faculty of Exact Sciences, Tandil Institute of Materials Physics (IFIMAT), National University of the Center of the Buenos Aires Province (UNCPBA), Pinto 399, 7000 Tandil, Argentina.

The sensitivity of positron annihilation characteristics to changes in the molecular packing in network-forming polymers has been demonstrated since the early 1980s. Positron annihilation lifetime spectroscopy (PALS) is a unique technique that can provide direct information on the free volume in polymers through the experimental parameters of the free volume hole distribution, their mean value, and volume fraction. This knowledge is currently applied for PALS investigations on the main processes that govern the molecular organization in some green polymers when subjected to different synthesis procedures or environmental conditions (humidity, physical aging, temperature).

View Article and Find Full Text PDF

In this work, three carboxymethyl starches (CMS) were obtained by the two-step reaction process of carboxymethylation with different degrees of substitution (0.16, 0.33, and 0.

View Article and Find Full Text PDF

This study aimed to estimate the effects of chitosan/ corn starch (CH/ CS equal 62:38) film in combination with nettle essential oil nanoemulsions (0.41 wt% NEONEs) and starch nanocrystals (6 wt% SNCs) on the microbial and qualitative characteristics of the fillets during refrigeration storage (4 ± 1 °C). The fillets were covered by biopolymeric films (CH/CS, CH/CS/SNCs, CH/CS/ NEONEs, CH/CS/SNCs/NEONEs).

View Article and Find Full Text PDF

Effects of molecular weight of chitosan on its binding ability with OSA starch and oil-water interface behavior of complex-stabilized emulsion.

Int J Biol Macromol

December 2024

School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Vic 3010, Australia. Electronic address:

This work examined the effects of molecular weight (2-15 kDa) and concentration (10-30 mg/mL) of chitosan (CTS) on the binding capacity and interface behavior between octenyl succinic acid sodium starch (OSS) and CTS, as well as their effects on the storage stability of emulsions. The results of the isothermal calorimetry titration demonstrated that OSS and CTS were complexed by electrostatic interaction and spontaneous hydrogen bonding driven by enthalpy (ΔH from -3931 to -7983 cal/mol, ΔS from -38.5 to -49.

View Article and Find Full Text PDF

Nose-to-brain delivery of lithium via a sprayable in situ-forming hydrogel composed of chelating starch nanoparticles.

J Control Release

December 2024

Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada. Electronic address:

While bipolar disorder patients can benefit from lithium therapy, high levels of lithium in the serum can induce undesirable systemic side effects. Intranasal (IN) lithium delivery offers a potential solution to this challenge given its potential to facilitate improved lithium transport to brain when delivered to the olfactory mucosa. Herein, a sprayable, in situ forming nanoparticle network hydrogel (NNH) based on Schiff base interactions between chelator-functionalized oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) is reported that can be deployed within the nasal cavity to release ultra-small penetrative SNPs over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!