A high-quality Nd:GdLaNbO (Nd:GLNO) crystal is grown by the Czochralski method, demonstrating wide absorption and fluorescence spectra and advantage for producing ultrafast laser pulses. In this paper, the tunable and passively mode-locking Nd:GLNO lasers are characterized for the first time. The tuning coverage is 34.87 nm ranging from 1058.05 to 1092.92 nm with a maximum output power of 4.6 W at 1065.29 nm. A stable continuous-wave (CW) passively mode-locking Nd:GLNO laser is achieved at 1065.26 nm, delivering a pulse width of 9.1 ps and a maximum CW mode-locking output power of 0.27 W.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198918 | PMC |
http://dx.doi.org/10.3390/molecules26113179 | DOI Listing |
Nanophotonics
April 2024
TUM School of Computation, Information and Technology, Technical University of Munich (TUM), D-85748 Garching, Germany.
In research and engineering, short laser pulses are fundamental for metrology and communication. The generation of pulses by passive mode-locking is especially desirable due to the compact setup dimensions, without the need for active modulation requiring dedicated external circuitry. However, well-established models do not cover regular self-pulsing in gain media that recover faster than the cavity round trip time.
View Article and Find Full Text PDFSuccessful generation of ultrashort pulses in the spectral region of 920 nm using Nd-doped fibers requires effectively suppressing the dominant 1064 nm four-level transition. Utilizing a hybrid design incorporating a W-shaped double-clad Nd-doped fiber and a single-clad Nd-doped fiber together with filtering out parasitic 1.06 µm beam, we developed an oscillator capable of delivering ultrashort pulses at the central wavelength of 929 nm.
View Article and Find Full Text PDFTo the best of our knowledge, this is the first report on continuous and passively mode-locked operation of the multi-component fluoride CaSrBaF crystal. A novel disorder laser material, Yb:CaSrBaF (CaSrBaF) of multi-component middle entropy crystal was designed and grown by temperature gradient technique (TGT) for the first time. X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis of Yb:CaSrBaF crystal reveals that Ca, Sr, and Ba of near equal atomic ratio (1:1:1) have formed a homogeneous single-phased fluorite solid solution.
View Article and Find Full Text PDFReducing the repetition rate is one of the effective ways to increase the peak-power of the mode-locked pulses. However, for a vertical-external-cavity surface-emitting laser (VECSEL), the carrier lifetime in the nanosecond regime limits the further reduction of the pulse repetition rate, or in other words, limits the average output power of the mode-locked laser at low repetition rates, and ultimately restricts the peak-power of the pulses. This work uses a specially designed saturable Bragg reflector to start the mode-locking, and both low repetition rate and high average power are achieved simultaneously in a passively mode-locked VECSEL.
View Article and Find Full Text PDFWe have proposed and demonstrated the generation of a high-repetition-rate ultrashort pulse with long-term stability and low noise based on a harmonic mode-locked (HML) figure-9 fiber laser. Different HML orders from the 2nd to the 13th are generated by adjusting the pump power, net dispersion, and wave plate angles. A 2-GHz HML pulse is obtained with a 155-MHz fundamental repetition rate in a Yb-doped fiber laser, and the corresponding supermode suppression level is as high as 50 dB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!