Novel Multilayer SAW Temperature Sensor for Ultra-High Temperature Environments.

Micromachines (Basel)

Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China.

Published: May 2021

Performing high-temperature measurements on the rotating parts of aero-engine systems requires wireless passive sensors. Surface acoustic wave (SAW) sensors can measure high temperatures wirelessly, making them ideal for extreme situations where wired sensors are not applicable. This study reports a new SAW temperature sensor based on a langasite (LGS) substrate that can perform measurements in environments with temperatures as high as 1300 °C. The Pt electrode and LGS substrate were protected by an AlN passivation layer deposited via a pulsed laser, thereby improving the crystallization quality of the Pt film, with the function and stability of the SAW device guaranteed at 1100 °C. The linear relationship between the resonant frequency and temperature is verified by various high-temperature radio-frequency (RF) tests. Changes in sample microstructure before and after high-temperature exposure are analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The analysis confirms that the proposed AlN/Pt/Cr thin-film electrode has great application potential in high-temperature SAW sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229921PMC
http://dx.doi.org/10.3390/mi12060643DOI Listing

Publication Analysis

Top Keywords

temperature sensor
8
lgs substrate
8
novel multilayer
4
temperature
4
multilayer temperature
4
sensor ultra-high
4
ultra-high temperature
4
temperature environments
4
environments performing
4
high-temperature
4

Similar Publications

The design of mixed-dimensional heterostructures has emerged to be a new frontier of research as it induces exciting physical/chemical properties that extend beyond the fundamental properties of single dimensional systems. Therefore, rational design of heterostructured materials with novel surface chemistry and tailored interfacial properties appears to be very promising for the devices such as the gas sensors. Here, a highly sensitive gas sensor device is constructed by employing heterostructures of boron doped molybdenum disulfide quantum dots (B-MoS Qdots) assembled into the matrix of TiCT MXene.

View Article and Find Full Text PDF

This paper introduces an innovative, adaptive Fractional Open-Circuit Voltage (FOCV) algorithm combined with a robust Improved Model Reference Adaptive Controller (IMRAC) for Maximum Power Point Tracking (MPPT) in standalone photovoltaic (PV) systems. The proposed two-stage control strategy enhances energy efficiency, simplifies system operation, and addresses limitations in conventional MPPT methods, such as slow convergence, high oscillations, and susceptibility to environmental fluctuations. The first stage dynamically estimates the Maximum Power Point (MPP) voltage using a novel adaptive FOCV method, which eliminates the need for irradiance sensors or physical disconnection of PV modules.

View Article and Find Full Text PDF

Leakage analysis and leakage monitoring system design for LNG tanker filling process.

Sci Rep

December 2024

PetroChina Kunlun Gas Co., Ltd. Sichuan Branch, Chengdu Sichua, China.

During the filling process of LNG tank trucks, due to the long-term operation of filling equipment in low temperature and high-pressure conditions, the sealing parts in the equipment are prone to failure, leading to leaks. The reasons for the leakage of LNG filling equipment were analyzed, and the diffusion of LNG after different equivalent leakage hole diameters and different wind speeds were numerically analyzed. A gas leak monitoring system suitable for LNG filling stations was established based on TDLAS technology.

View Article and Find Full Text PDF

The present investigation provides an easy and affordable strategy for fabrication of functional ceramics BiNaTiO-SrFeO (BNT-SrF5) thick films on a flexible, inexpensive and electrically integrated substrate using electrophoretic deposition process (EPD). EPD is a widely accepted, environmentally friendly method for applying coatings from a colloidal suspension to conductive substrates. Lead-free ferroelectric BNT-SrF5 powder was synthesized by solid state method to fabricate bulk samples and thick films (30-160 μm) by EPD process.

View Article and Find Full Text PDF

NbCT/MoSe composites for a highly sensitive NH gas sensor at room temperature.

Talanta

December 2024

Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Tianjin, 300050, China. Electronic address:

The detection of ammonia (NH)gas holds significant importance in both daily life and industrial production. In this study, the NbCT/MoSe sensor was synthesized using a one-step hydrothermal method and applied for NH detection. The morphology and elemental composition of the composites were analyzed through a series of characterization techniques including XRD, TEM, SEM, and XPS, confirming the successful synthesis of NbCT/MoSe composite with the optimal mass ratio.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!