Extracellular vesicles (EVs) are nanoparticles released by cells that contain a multitude of biomolecules, which act synergistically to signal multiple cell types. EVs are ideal candidates for promoting tissue growth and regeneration. The tissue regenerative potential of EVs raises the tantalizing possibility that immobilizing EVs on implant surfaces could potentially generate highly bioactive and cell-instructive surfaces that would enhance implant integration into the body. Such surfaces could address a critical limitation of current implants, which do not promote bone tissue formation or bond bone. Here, we developed bioactive titanium surface coatings (SurfEV) using two types of EVs: secreted by decidual mesenchymal stem cells (DEVs) and isolated from fermented papaya fluid (PEVs). For each EV type, we determined the size, morphology, and molecular composition. High concentrations of DEVs enhanced cell proliferation, wound closure, and migration distance of osteoblasts. In contrast, the cell proliferation and wound closure decreased with increasing concentration of PEVs. DEVs enhanced Ca/P deposition on the titanium surface, which suggests improvement in bone bonding ability of the implant (i.e., osteointegration). EVs also increased production of Ca and P by osteoblasts and promoted the deposition of mineral phase, which suggests EVs play key roles in cell mineralization. We also found that DEVs stimulated the secretion of secondary EVs observed by the presence of protruding structures on the cell membrane. We concluded that, by functionalizing implant surfaces with specialized EVs, we will be able to enhance implant osteointegration by improving hydroxyapatite formation directly at the surface and potentially circumvent aseptic loosening of implants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227988 | PMC |
http://dx.doi.org/10.3390/nano11061445 | DOI Listing |
Adv Mater
January 2025
Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China.
The development of new non-neurotransmitter drugs is an important supplement to the clinical treatment of major depressive disorder. The latest development of mRNA therapy provides the possibility for the treatment of some major diseases. The endoplasmic reticulum (ER) and mitochondria constitute a highly interconnected set of fundamental organelles within cells.
View Article and Find Full Text PDFBMC Biol
January 2025
Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
Background: Extracellular vesicles (EVs) derived from endothelial cells (ECs) are increasingly recognized for their role in the initiation and progression of atherosclerosis. ECs experience varying degrees and types of blood flow depending on their specific arterial locations. In regions of disturbed flow, which are predominant sites for atherosclerotic plaque formation, the impact of disturbed flow on the secretion and function of ECs-derived EVs remains unclear.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03766, USA.
Microglia respond to cytotoxic protein aggregates associated with the progression of neurodegenerative disease. Pathological protein aggregates activate the microglial NLRP3 inflammasome resulting in proinflammatory signaling, secretion, and potentially pyroptotic cell death. We characterized mixed sex primary mouse microglia exposed to microbial stressors and alpha synuclein preformed fibrils (αsyn PFFs) to identify cellular mechanisms related to Parkinson's disease.
View Article and Find Full Text PDFTalanta
January 2025
Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu Province, 210008, China.
Extracellular vesicles (EVs) are promising non-invasive biomarkers for cancer diagnosis. EVs proteins play a critical role in tumor progress and metastasis. However, accurately and reliably diagnosing cancers is greatly limited by single protein marker on EVs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Orthopedics, Shanghai Tenth People's Hospital School of Medicine, Tongji University, Shanghai, 200072, China.
Denervated muscle atrophy, a common outcome of nerve injury, often results in irreversible fibrosis due to the limited effectiveness of current therapeutic interventions. While extracellular vesicles (EVs) offer promise for treating muscle atrophy, their therapeutic potential is hindered by challenges in delivery and bioactivity within the complex microenvironment of the injury site. To address this issue, an injectable hydrogel is developed that is responsive to both ultrasound and pH, with inherent anti-inflammatory and antioxidant properties, designed to improve the targeted delivery of stem cell-derived EVs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!