The synthesis of palladium-based trimetallic catalysts via a facile and scalable synthesis procedure was shown to yield highly promising materials for borohydride-based fuel cells, which are attractive for use in compact environments. This, thereby, provides a route to more environmentally friendly energy storage and generation systems. Carbon-supported trimetallic catalysts were herein prepared by three different routes: using a NaBH-ethylene glycol complex (PdAuNi/C), a NaBH-2-propanol complex (PdAuNi/C), and a three-step route (PdAuNi/C). Notably, PdAuNi/C yielded highly dispersed trimetallic alloy particles, as determined by XRD, EDX, ICP-OES, XPS, and TEM. The activity of the catalysts for borohydride oxidation reaction was assessed by cyclic voltammetry and RDE-based procedures, with results referenced to a Pd/C catalyst. A number of exchanged electrons close to eight was obtained for PdAuNi/C and PdAuNi/C (7.4 and 7.1, respectively), while the others, PdAuNi/C and Pd/C, presented lower values, 2.8 and 1.2, respectively. A direct borohydride-peroxide fuel cell employing PdAuNi/C catalyst in the anode attained a power density of 47.5 mW cm at room temperature, while the elevation of temperature to 75 °C led to an approximately four-fold increase in power density to 175 mW cm. Trimetallic catalysts prepared via this synthesis route have significant potential for future development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228588PMC
http://dx.doi.org/10.3390/nano11061441DOI Listing

Publication Analysis

Top Keywords

trimetallic catalysts
16
pdauni/c
9
carbon-supported trimetallic
8
borohydride oxidation
8
oxidation reaction
8
catalysts prepared
8
complex pdauni/c
8
pdauni/c pdauni/c
8
power density
8
catalysts
5

Similar Publications

Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.

View Article and Find Full Text PDF

Layered double hydroxide modified bismuth vanadate as an efficient photoanode for enhancing photoelectrochemical water splitting.

Mater Horiz

January 2025

Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan.

Photoelectrochemical (PEC) water splitting has attracted significant interest as a promising approach for producing clean and sustainable hydrogen fuel. An efficient photoanode is critical for enhancing PEC water splitting. Bismuth vanadate (BiVO) is a widely recognized photoanode for PEC applications due to its visible light absorption, suitable valence band position for water oxidation, and outstanding potential for modifications.

View Article and Find Full Text PDF

Revolutionizing Methane Transformation with the Dual Production of Aromatics and Electricity in a Protonic Ceramic Electrocatalytic Membrane Reactor.

ACS Appl Mater Interfaces

January 2025

Department of Hydrogen and Electrochemistry, Idaho National Laboratory, Idaho Falls, ID 83415, United States.

Article Synopsis
  • Using a protonic ceramic electrocatalytic membrane reactor, methane is converted into higher-value chemicals like benzene with high efficiency and minimal emissions.
  • The system achieved a 15.6% methane conversion rate and an 11.4% benzene yield, which outperform traditional thermochemical methods by 15.7% and 16.0%, respectively.
  • The reactor also effectively removes hydrogen, maintaining stable operation for 45 hours and allowing for catalyst regeneration, presenting a promising solution for reducing carbon impact in chemical processing.
View Article and Find Full Text PDF

Boosting Electrocatalytic Nitrate Reduction to Ammonia on a Hierarchical Nanoporous Ag,Ni-Codoped Cu Catalyst via Trimetallic Synergistic and Nanopore Enrichment Effects.

Nano Lett

January 2025

Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China.

The electrochemical nitrate (NO) reduction reaction (NORR) offers a promising route for NO wastewater treatment and sustainable ammonia (NH) synthesis. However, the reaction still faces the challenges of unsatisfactory productivity and selectivity. Herein, we report a hierarchical nanoporous Ag,Ni-codoped Cu (np Ag,Ni-Cu) catalyst that exhibits a high NH Faradaic efficiency of 98.

View Article and Find Full Text PDF
Article Synopsis
  • - This study introduces a quick method to turn bimetallic NiCo-oxides into trimetallic NiCoPt alloys using a pulsed laser in ethanol, showcasing the efficiency of the resulting NiCoPt-10 alloy in catalyzing hydrogen evolution and hydrazine oxidation reactions.
  • - The NiCoPt-10 alloy achieves impressive electrochemical performance with low overpotentials (90 mV for HER and 0.068 V for HzOR) and operates successfully in a specific electrolyzer setup, requiring only 0.295 V to produce 10 mA·cm.
  • - The research highlights the dual-functional capabilities of the NiCoPt-10 catalyst in both hydrogen production and as the cathode
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!