Nanodiamond (ND) particles are effective lubricant additives. Attention of research has shifted towards investigating the particles as secondary additives. ND particles provide more benefits as secondary additives than as the sole lubricant additive for steel-steel contacts. In this work, the influence of ND particles as secondary additives on oil lubrication of steel-aluminium tribopair (hard-soft contact) was examined. AISI 52100 steel balls were slid against AA2024 aluminium alloy discs, in the presence of polyalphaolefin (PAO) base oil, in boundary lubrication regime (applied normal load: 10 N to 50 N). Primary additives were copper oxide (CuO) and hexagonal boron nitride (h-BN) nanoparticles. The addition of ND particles to PAO, with CuO and h-BN as primary additives, at the lowest applied normal load of 10 N: (i) decreased the volumetric wear of the aluminium discs by 28% and 63%, respectively, and (ii) decreased the coefficient of friction by 15% and 33%, respectively. At the highest applied normal load of 50 N, it: (i) decreased the volumetric wear of the aluminium discs by 20% and 38%, respectively, and (ii) decreased the coefficient of friction by 5.4% and 8%, respectively. ND particles as secondary additives significantly reduce energy loss and power loss as a consequence of an effective reduction in friction during sliding. Unique characteristics of ND particles-such as their (a) physicochemical and thermal properties, (b) ball bearing and polishing effects and (c) synergistic interaction with primary additives to form stable tribofilms-enhance the lubrication performance of steel-aluminium contact. ND particles in combination with h-BN nanoparticles showed the best performance, due to better synergy between the primary additive and the secondary additive. Results from the investigation indicate that ND particles taken as secondary additives in small amount (0.2 wt%) can improve oil lubrication performance of hard-soft contacts in engineering systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227376PMC
http://dx.doi.org/10.3390/nano11061438DOI Listing

Publication Analysis

Top Keywords

particles secondary
20
secondary additives
20
oil lubrication
12
applied normal
12
normal load
12
primary additives
12
additives
9
nanodiamond particles
8
secondary additive
8
lubrication steel-aluminium
8

Similar Publications

In this study, ultrasound-assisted glycated ovalbumin (G-UOVA) based on natural deep eutectic solvents (NADES) was prepared using response surface optimization. The binding affinity of (-)-gallocatechin gallate (GCG) to native OVA (NOVA), ultrasound treated OVA (UOVA), glycated OVA (GOVA), and G-UOVA followed G-UOVA > GOVA > UOVA > NOVA. The effects of various modifications and GCG binding on the secondary structure, particle size, and thermal stability of NOVA were investigated.

View Article and Find Full Text PDF

Nanodots of Transition Metal Sulfides, Carbonates, and Oxides Obtained Through Spontaneous Co-Precipitation with Silica.

Nanomaterials (Basel)

December 2024

Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.

The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.

View Article and Find Full Text PDF

The effect of coronary artery calcifications and radiotherapy on the risk of coronary artery disease in high-risk breast cancer patients in the DBCG RT-Nation cohort.

Radiother Oncol

December 2024

Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.

Background And Purpose: Radiotherapy improves outcomes for breast cancer. However, prior studies have correlated the risk of coronary artery disease (CAD) to the mean heart dose (MHD), mean dose to the left anterior descending artery (LAD_mean) and the left ventricle V5Gy (LV5). Other studies showed an increased risk of CAD for patients with pronounced coronary artery calcification (CAC) at the time of radiotherapy.

View Article and Find Full Text PDF

Exploring the druggability of the UEV domain of human TSG101 in search for broad-spectrum antivirals.

Protein Sci

January 2025

Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain.

The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics.

View Article and Find Full Text PDF

To form nonspherical emulsion droplets, the interfacial tension driving droplet sphericity must be overcome. This can be achieved through interfacial particle jamming; however, careful control of particle coverage is required. In this work, we present a scalable novel batch process to form nonspherical particle-stabilized emulsions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!