Timely centrifugation of blood for plasma preparation is a key step to ensure high plasma quality for analytics. Delays during preparation can significantly influence readouts of key clinical parameters. However, in a routine clinical environment, a strictly controlled timeline is often not feasible. The next best approach is to control for sample preparation delays by a marker that provides a readout of the time-dependent degradation of the sample. In this study, we explored the usefulness of glutathione status as potential marker of plasma preparation delay. As the concentration of glutathione in erythrocytes is at least two orders of magnitude higher than in plasma, even the slightest leakage of glutathione from the cells can be readily observed. Over the 3 h observation period employed in this study, we observed a linear increase of plasma concentrations of both reduced (GSH) and oxidized glutathione (GSSG). Artificial oxidation of GSH is prevented by rapid alkylation with N-ethylmaleimide directly in the blood sampling vessel as recently published. The observed relative leakage of GSH was significantly higher than that of GSSG. A direct comparison with plasma lactate dehydrogenase activity, a widely employed hemolysis marker, clearly demonstrated the superiority of our approach for quality control. Moreover, we show that the addition of the thiol alkylating reagent NEM directly to the blood tubes does not influence downstream analysis of other clinical parameters. In conclusion, we report that GSH gives an excellent readout of the duration of plasma preparation and the associated pre-analytical errors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226592 | PMC |
http://dx.doi.org/10.3390/antiox10060864 | DOI Listing |
PLoS Negl Trop Dis
January 2025
Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
Background: Schistosoma haematobium is the causative pathogen for urogenital schistosomiasis. To achieve progress towards schistosomiasis elimination, there is a critical need for developing highly sensitive and specific tools to monitor transmission in near-elimination settings. Although antibody detection is a promising approach, it is usually unable to discriminate active infections from past ones.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Zoophysiology, Department of Biology, Aarhus University, Aarhus C, Denmark.
Aim: Snakes exhibit remarkable physiological shifts when their large meals induce robust postprandial growth after prolonged fasting. To understand the regulatory mechanisms underlying this rapid metabolic transition, we examined the regulation of protein synthesis in pythons, focusing on processes driving early postprandial tissue remodeling and growth.
Methods: Using the SUnSET method with puromycin labeling, we measured in vivo protein synthesis in fasting and digesting snakes at multiple post-feeding intervals.
CNS Drugs
January 2025
Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy.
Voltage-gated Kv7 potassium channels, particularly Kv7.2 and Kv.7.
View Article and Find Full Text PDFMetabolites
January 2025
Department of Biochemistry and Pharmacology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania.
Background: Pregnancy induces significant physiological and metabolic changes in the mother to support fetal growth and prepare for childbirth. These adaptations impact various systems, including immune tolerance, metabolism, and endocrine function. While metabolomics has been utilized to study pregnancy-related metabolic changes, comprehensive comparisons between pregnant and non-pregnant states, particularly using ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS), remain limited.
View Article and Find Full Text PDFGels
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Hydrogels are widely utilized in industrial and scientific applications owing to their ability to immobilize active molecules, cells, and nanoparticles. This capability has led to their growing use in various biomedical fields, including cell culture and transplantation, drug delivery, and tissue engineering. Among the available synthesis techniques, ionizing-radiation-induced fabrication stands out as an environmentally friendly method for hydrogel preparation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!