Closed environments such as the International Space Station (ISS) and spacecraft for other planned interplanetary destinations require sustainable environmental control systems for manned spaceflight and habitation. These systems require monitoring for microbial contaminants and potential pathogens that could foul equipment or affect the health of the crew. Technological advances may help to facilitate this environmental monitoring, but many of the current advances do not function as expected in reduced gravity conditions. The microbial monitoring system (RAZOR EX) is a compact, semi-quantitative rugged PCR instrument that was successfully tested on the ISS using station potable water. After a series of technical demonstrations between ISS and ground laboratories, it was determined that the instruments functioned comparably and provided a sample to answer flow in approximately 1 hour without enrichment or sample manipulation. Post-flight, additional advancements were accomplished at Kennedy Space Center, Merritt Island, FL, USA, to expand the instrument's detections of targeted microorganisms of concern such as water, food-borne, and surface microbes including serovar Typhimurium, , and . Early detection of contaminants and bio-fouling microbes will increase crew safety and the ability to make appropriate operational decisions to minimize exposure to these contaminants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229003 | PMC |
http://dx.doi.org/10.3390/life11060492 | DOI Listing |
Environ Sci Ecotechnol
January 2025
Systems Biotechnology Group, Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.
Biophotovoltaics (BPV) represents an innovative biohybrid technology that couples electrochemistry with oxygenic photosynthetic microbes to harness solar energy and convert it into electricity. Central to BPV systems is the ability of microbes to perform extracellular electron transfer (EET), utilizing an anode as an external electron sink. This process simultaneously serves as an electron sink and enhances the efficiency of water photolysis compared to conventional electrochemical water splitting.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Food Sensory and Cognitive Science, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
The rapid evolution of nanotechnology has catalyzed significant advancements in the design and application of nano-sensors, particularly within the food industry, where ensuring safety and quality is of paramount concern. This review explores the multifaceted role of nano-sensors constructed from diverse nanomaterials in detecting foodborne pathogens and toxins, offering a comprehensive analysis of their operational principles, sensitivity, and specificity. Nano-sensors leverage unique physical and chemical properties at the nanoscale to enhance the detection of microbial contamination, actively contributing to food safety protocols.
View Article and Find Full Text PDFMicrobiome
January 2025
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
Background: The widespread selective pressure of antibiotics in the environment has led to the propagation of antibiotic resistance genes (ARGs). However, the mechanisms by which microbes balance population growth with the enrichment of ARGs remain poorly understood. To address this, we employed microcosm cultivation at different antibiotic (i.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China. Electronic address:
As a crucial source of potable water, the quality of water in Shanmei reservoir strongly and directly impacts the safety and well-being of downstream residents. Microorganisms play a pivotal role in the reservoir's resource and energy cycle. However, ecological protection efforts for the Shanmei reservoir have encountered numerous challenges in recent years.
View Article and Find Full Text PDFAllergy
January 2025
Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Maryland, USA.
Background: Intestinal barrier dysfunction may lead to a break in tolerance and development of food allergy (FA). There is contradictory evidence on whether intestinal permeability (IP) is altered in IgE-mediated FA. Thus, we sought to determine whether IP differed between children with eczema who did (FA group) or did not (atopic controls, ACs) develop FA and whether peanut sensitization, allergy, and early introduction impacted IP using serum biomarkers zonulin, soluble CD14, and Intestinal Fatty Acid Binding Protein among randomly selected participants enrolled in the Learning Early About Peanut allergy trial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!