A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermal and Mechanical Properties of Esterified Lignin in Various Polymer Blends. | LitMetric

Lignin is an abundant polymeric renewable material and thus a promising candidate for incorporation in various commercial thermoplastic polymers. One challenge is to increase the dispersibility of amphiphilic lignin in lipophilic thermoplastic polymers We altered Kraft lignin using widely available and renewable fatty acids, such as oleic acid, yielding more than 8 kg of lignin ester as a light brown powder. SEC showed a molecular weight of 5.8 kDa with a PDI = 3.80, while the T of the lignin ester was concluded to 70 °C. Furthermore, the lignin ester was incorporated (20%) into PLA, HDPE, and PP to establish the thermal and mechanical behavior of the blends. DSC and rheological measurements suggest that the lignin ester blends consist of a phase-separated system. The results demonstrate how esterification of lignin allows dispersion in all the evaluated thermoplastic polymers maintaining, to a large extent, the tensile properties of the original material. The impact strength of HDPE and PLA blends show substantial loss upon the addition of the lignin ester. Reconverting the acetic acid side stream into acetic anhydride and reusing the catalyst, the presented methodology can be scaled up to produce a lignin-based substitute to fossil materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198513PMC
http://dx.doi.org/10.3390/molecules26113219DOI Listing

Publication Analysis

Top Keywords

lignin ester
20
thermoplastic polymers
12
lignin
10
thermal mechanical
8
ester
5
mechanical properties
4
properties esterified
4
esterified lignin
4
lignin polymer
4
blends
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!