(Loew) is one of the most destructive insect pests damaging several fruits of economic importance. The sterile insect technique (SIT) is used under an area-wide integrated pest management approach, to suppress these pest populations. Mass rearing facilities were initially established to produce sterile males of bi-sexual strains in support of SIT. The first genetic sexing strain (GSS) for , Tapachula-7, based on pupal color dimorphism, was a key development since the release of males-only significantly increases the SIT efficiency. In this study, we document the development of a novel pupal color-based GSS. Twelve radiation-induced translocation lines were assessed as potential GSS in terms of recombination rates and rearing efficiency at a small scale. The best one, GUA10, was cytogenetically characterized: it was shown to carry a single translocation between the Y chromosome and chromosome 2, which is known to carry the marker. This GSS was further evaluated at medium and large scales regarding its genetic stability, productivity and quality versus Tapachula-7. GUA10 presented better genetic stability, fecundity, fertility, production efficiency, flying ability, and male mating, clear indicators that GUA10 GSS can significantly improve the efficacy and cost-effectiveness of SIT applications against this pest species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228190PMC
http://dx.doi.org/10.3390/insects12060499DOI Listing

Publication Analysis

Top Keywords

genetic stability
12
genetic sexing
8
sexing strain
8
sterile insect
8
insect technique
8
rearing efficiency
8
gss
5
novel genetic
4
strain cost-effective
4
cost-effective sterile
4

Similar Publications

Arabidopsis CIRP1 E3 ligase modulates drought and oxidative stress tolerance and reactive oxygen species homeostasis by directly degrading catalases.

J Integr Plant Biol

January 2025

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.

Reactive oxygen species (ROS) plays critical roles in modulating plant growth and stress response and its homeostasis is fine tuned using multiple peroxidases. HO, a major kind of ROS, is removed rapidly and directly using three catalases, CAT1, CAT2, and CAT3, in Arabidopsis. Although the activity regulations of catalases have been well studied, their degradation pathway is less clear.

View Article and Find Full Text PDF

Nanobodies or variable antigen-binding domains (VH) derived from heavy chain-only antibodies (HcAb) occurring in the Camelidae family offer certain superior physicochemical characteristics like enhanced stability, solubility, and low immunogenicity compared to conventional antibodies. Their efficient antigen-binding capabilities make them a preferred choice for next-generation small biologics. In the present work, we design an anti-SARS-CoV-2 bi-paratopic nanobody drug conjugate by screening a nanobody database.

View Article and Find Full Text PDF

Background: Glyphosate is an extensively employed herbicide in agriculture, specifically for sugarcane cultivation. The situation is different with the extensive physiological and genetic effects exerted by this herbicide on a range of plant species, including sugarcane, whose model basis is still poorly characterized, although its primary mode of action, which acts on the EPSPS enzyme in the shikimic acid pathway, is completely elucidated. The current study was aimed at investigating the stability of glyphosate formulation, molecular interactions of glyphosate formulation with rbcL enzyme associated with chlorophyll metabolism, and its effects on varieties of sugarcane.

View Article and Find Full Text PDF

In silico screening and immunogenic features of putative tick cement protein PA107 from Ixodes ricinus tick.

Exp Appl Acarol

January 2025

Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Tick salivary proteins are crucial for efficient and successful tick feeding. Most of them are still uncharacterized, especially those involved in the formation of tick cement. Tick salivary protein PA107 is a putative cement protein, which is transcribed in salivary glands during the initial phase of tick feeding.

View Article and Find Full Text PDF

tRNA m1A modification regulates cholesterol biosynthesis to promote antitumor immunity of CD8+ T cells.

J Exp Med

March 2025

Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Activation of CD8+ T cells necessitates rapid metabolic reprogramming to fulfill the substantial biosynthetic demands of effector functions. However, the posttranscriptional mechanisms underpinning this process remain obscure. The transfer RNA (tRNA) N1-methyladenine (m1A) modification, essential for tRNA stability and protein translation, has an undefined physiological function in CD8+ T cells, particularly in antitumor responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!