Breast Cancer Cell Re-Dissemination from Lung Metastases-A Mechanism for Enhancing Metastatic Burden.

J Clin Med

Department of Anatomy and Structural Biology, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY 10461, USA.

Published: May 2021

AI Article Synopsis

  • Metastatic disease is a leading cause of death in cancer patients, but the processes behind it are not fully understood.
  • New research shows that breast cancer cells can spread not just from primary tumors or lymph nodes, but also from lung metastases, meaning metastasis can occur even after the primary tumor is removed.
  • Blocking this re-dissemination of cancer cells could be key to improving survival rates in patients with metastatic diseases.

Article Abstract

Although metastatic disease is the primary cause of mortality in cancer patients, the mechanisms leading to overwhelming metastatic burden are still incompletely understood. Metastases are the endpoint of a series of multi-step events involving cancer cell intravasation, dissemination to distant organs, and outgrowth to metastatic colonies. Here we show, for the first-time, that breast cancer cells do not solely disseminate to distant organs from primary tumors and metastatic nodules in the lymph nodes, but also do so from lung metastases. Thus, our findings indicate that metastatic dissemination could continue even after the removal of the primary tumor. Provided that the re-disseminated cancer cells initiate growth upon arrival to distant sites, cancer cell re-dissemination from metastatic foci could be one of the crucial mechanisms leading to overt metastases and patient demise. Therefore, the development of new therapeutic strategies to block cancer cell re-dissemination would be crucial to improving survival of patients with metastatic disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199463PMC
http://dx.doi.org/10.3390/jcm10112340DOI Listing

Publication Analysis

Top Keywords

cancer cell
16
cell re-dissemination
12
breast cancer
8
metastatic
8
metastatic burden
8
metastatic disease
8
mechanisms leading
8
distant organs
8
cancer cells
8
cancer
6

Similar Publications

Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.

View Article and Find Full Text PDF

Protocol to generate a 3D atherogenesis-on-chip model for studying endothelial-macrophage crosstalk in atherogenesis.

STAR Protoc

January 2025

Department of Experimental Vascular Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium. Electronic address:

The endothelium is the gatekeeper of vessel health, and its dysfunction is pivotal in driving atherogenesis. Here, we present a protocol to replicate endothelial-macrophage crosstalk during atherogenesis, called the "atherogenesis-on-chip" model, based on the Emulate dual-channel perfusion system. We describe a model for studying endothelial-macrophage interactions during atherogenesis in human aortic endothelial cells and human macrophages using qPCR and secretome analysis, fluorescence microscopy, and flow cytometry.

View Article and Find Full Text PDF

Live-cell metabolic analyzer protocol for measuring glucose and lactate metabolic changes in human cells.

STAR Protoc

January 2025

Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan. Electronic address:

Understanding metabolic conditions related to glycolysis dependence is crucial for developing new treatments in cancer and regenerative medicine. This protocol details a method for using the live-cell metabolic analyzer (LiCellMo) to measure continuous changes in glucose consumption and lactate production in cultured human cells. LiCellMo provides real-time data on consecutive metabolic changes, improving measurements of these processes in various contexts, including in cancer and regenerative treatments.

View Article and Find Full Text PDF

Polycomb repressive complex 2 (PRC2), composed of the core subunits EED, SUZ12, and either EZH1 or EZH2, is critical for maintaining cellular identity in multicellular organisms. PRC2 deposits H3K27me3, which is thought to recruit the canonical form of PRC1 (cPRC1) to promote gene repression. Here, we show that EZH1-PRC2 and cPRC1 are the primary Polycomb complexes on target genes in non-dividing, quiescent cells.

View Article and Find Full Text PDF

IL-7 promotes integrated glucose and amino acid sensing during homeostatic CD4 T cell proliferation.

Cell Rep

January 2025

School of Infection, Inflammation and Immunology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK. Electronic address:

Interleukin (IL)-7 promotes T cell expansion during lymphopenia. We studied the metabolic basis in CD4 T cells, observing increased glucose usage for nucleotide synthesis and oxidation in the tricarboxylic acid (TCA) cycle. Unlike other TCA metabolites, glucose-derived citrate does not accumulate upon IL-7 exposure, indicating diversion into other processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!