Porous Polymers from High Internal Phase Emulsions as Scaffolds for Biological Applications.

Polymers (Basel)

PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.

Published: May 2021

High internal phase emulsions (HIPEs), with densely packed droplets of internal phase and monomers dispersed in the continuous phase, are now an established medium for porous polymer preparation (polyHIPEs). The ability to influence the pore size and interconnectivity, together with the process scalability and a wide spectrum of possible chemistries are important advantages of polyHIPEs. In this review, the focus on the biomedical applications of polyHIPEs is emphasised, in particular the applications of polyHIPEs as scaffolds/supports for biological cell growth, proliferation and tissue (re)generation. An overview of the polyHIPE preparation methodology is given and possibilities of morphology tuning are outlined. In the continuation, polyHIPEs with different chemistries and their interaction with biological systems are described. A further focus is given to combined techniques and advanced applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198890PMC
http://dx.doi.org/10.3390/polym13111786DOI Listing

Publication Analysis

Top Keywords

internal phase
12
high internal
8
phase emulsions
8
applications polyhipes
8
polyhipes
5
porous polymers
4
polymers high
4
phase
4
emulsions scaffolds
4
scaffolds biological
4

Similar Publications

Background: Cancer requires interdisciplinary intersectoral care. The Care Coordination Instrument (CCI) captures patients' perspectives on cancer care coordination. We aimed to translate, adapt, and validate the CCI for Germany (CCI German version).

View Article and Find Full Text PDF

Need For A Strategic Approach To Knowledge Transfer And Exchange: Late-phase clinical trials and systematic reviews find results that have the potential to improve health outcomes for people. However, there are often delays in these results influencing clinical practice. We developed a knowledge transfer and exchange strategy to support research teams, aiming to identify activities along the research process to maximise and accelerate the research impact.

View Article and Find Full Text PDF

Crisdesalazine alleviates inflammation in an experimental autoimmune encephalomyelitis multiple sclerosis mouse model by regulating the immune system.

BMC Neurosci

January 2025

Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.

Microglia/macrophages participate in the development of and recovery from experimental autoimmune encephalomyelitis (EAE), and the macrophage M1 (pro-inflammatory)/M2 (anti-inflammatory) phase transition is involved in EAE disease progression. We evaluated the efficacy of crisdesalazine (a novel microsomal prostaglandin E2 synthase-1 inhibitor) in an EAE model, including its immune-regulating potency in lipopolysaccharide-stimulated macrophages, and its neuroprotective effects in a macrophage-neuronal co-culture system. Crisdesalazine significantly alleviated clinical symptoms, inhibited inflammatory cell infiltration and demyelination in the spinal cord, and altered the phase of microglial/macrophage and regulatory T cells.

View Article and Find Full Text PDF

Rationale And Objectives: Mixed ground-glass nodules (mGGNs) are highly malignant and common nonspecific lung imaging findings. This study aimed to explore whether combining quantitative and qualitative spectral dual-layer detector-based computed tomography (SDCT)-derived parameters with serological tumor abnormal proteins (TAPs) and thymidine kinase 1 (TK1) expression enhances invasive mGGN diagnostic efficacy and to develop a joint diagnostic model.

Materials And Methods: This prospective study included patients with mGGNs undergoing preoperative triple-phase contrast-enhanced SDCT with TAP and TK1 tests.

View Article and Find Full Text PDF

Determination and validation of polycyclic aromatic hydrocarbons (PAH4) in katsuobushi, plant-based food supplements, and cocoa bean shells using GC-MS/MS.

J Food Drug Anal

December 2024

Division of Research and Analysis, Taiwan Food and Drug Administration, Ministry of Health and Welfare, No.161-2, Kunyang St, Nangang District, Taipei City 11561, Taiwan, R.O.C.

Polycyclic aromatic hydrocarbons (PAHs) are primarily generated through the incomplete combustion or pyrolysis of organic materials in various industrial processes. Foods may become contaminated with environmental PAHs found in air, soil, or water, or through industrial food processing methods such as smoking, roasting, drying, and grilling. The Ministry of Health and Welfare in Taiwan has established maximum levels for benzo[a]pyrene (BaP) and indicative values for BaP as well as PAH4 (the sum of benz[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene) in foods as operational guidelines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!