Zinc oxide (ZnO) nanowires (NWs) are excellent candidates for the fabrication of energy harvesters, mechanical sensors, and piezotronic and piezophototronic devices. In order to integrate ZnO NWs into flexible devices, low-temperature fabrication methods are required that do not damage the plastic substrate. To date, the deposition of patterned ceramic thin films on flexible substrates is a difficult task to perform under vacuum-free conditions. Printing methods to deposit functional thin films offer many advantages, such as a low cost, low temperature, high throughput, and patterning at the same stage of deposition. Among printing techniques, gravure-based techniques are among the most attractive due to their ability to produce high quality results at high speeds and perform deposition over a large area. In this paper, we explore gravure printing as a cost-effective high-quality method to deposit thin ZnO seed layers on flexible polymer substrates. For the first time, we show that by following a chemical bath deposition (CBD) process, ZnO nanowires may be grown over gravure-printed ZnO nanoparticle seed layers. Piezo-response force microscopy (PFM) reveals the presence of a homogeneous distribution of Zn-polar domains in the NWs, and, by use of the data, the piezoelectric coefficient is estimated to be close to 4 pm/V. The overall results demonstrate that gravure printing is an appropriate method to deposit seed layers at a low temperature and to undertake the direct fabrication of flexible piezoelectric transducers that are based on ZnO nanowires. This work opens the possibility of manufacturing completely vacuum-free solution-based flexible piezoelectric devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226623 | PMC |
http://dx.doi.org/10.3390/nano11061430 | DOI Listing |
Microsyst Nanoeng
December 2024
Department of Computer and Information Engineering, Khalifa University, Abu Dhabi, 12778, UAE.
The demand for sustainable energy sources to power small electronics like IoT devices has led to exploring innovative solutions like acoustic energy harvesting using piezoelectric nanogenerators (PENGs). Acoustic energy harvesting leverages ambient noise, converting it into electrical energy through the piezoelectric effect, where certain materials generate an electric charge in response to mechanical stress or vibrations. This review paper provides a comprehensive analysis of the advancements in PENG technology, emphasizing their role in acoustic energy harvesting.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China.
Neuromorphic computing, inspired by the brain, holds significant promise for advancing artificial intelligence. Artificial optoelectronic synapses, which can convert optical signals into electrical signals, play a crucial role in neuromorphic computing. In this study, we successfully fabricated a flexible artificial optoelectronic synapse device based on the ZnO/PDMS structure by utilizing the magnetron sputtering technique to deposit the ZnO film on a flexible substrate.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
This study explores the hydrogen generation potential via water-splitting reactions under UV-vis radiation by using a synergistic assembly of ZnO nanoparticles integrated with MoS, single-walled carbon nanotubes (SWNTs), and crystalline silicon nanowires (SiNWs) to create the MoS-SiNWs-SWNTs@ZnONPs nanocomposites. A comparative analysis of MoS synthesized through chemical and physical exfoliation methods revealed that the chemically exfoliated MoS exhibited superior performance, thereby being selected for all subsequent measurements. The nanostructured materials demonstrated exceptional surface characteristics, with specific surface areas exceeding 300 m g.
View Article and Find Full Text PDFNanophotonics
March 2024
Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea.
We demonstrate the facile fabrication of metal-wire-embedded microtrenches interconnected with semiconducting ZnO nanowires (ZNWs) through the continuous mechanical machining of micrograting trenches, the mechanical embedding of solution-processable metal wires therein, and the metal-mediated hydrothermal growth of ZNWs selectively thereto. The entire process can be performed at room or a very low temperature without resorting to vacuum, lithography, and etching steps, thereby enabling the use of flexible polymer substrates of scalable sizes. We optimize the fabrication procedure and resulting structural characteristics of this nanowire-interconnected flexible trench-embedded electrode (NIFTEE) architecture.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
NovaMechanics Ltd., Nicosia, Cyprus.
This review explores the state-of-the-art with respect to multicomponent nanomaterials (MCNMs) and high aspect ratio nanomaterials (HARNs), with a focus on their physicochemical characterisation, applications, and hazard, fate, and risk assessment. Utilising the PRISMA approach, this study investigates specific MCNMs including cerium-zirconium mixtures (CeZrO) and ZnO nanomaterials doped with transition metals and rare earth elements, as well as Titanium Carbide (TiC) nanomaterials contained in Ti-6Al-4V alloy powders. HARNs of interest include graphene, carbon-derived nanotubes (CNTs), and metallic nanowires, specifically Ag-based nanowires.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!