Despite the potential in fabrication of microfluidic paper-based analytical devices (μPADs) for point-of-care testing (POCT) kits, the development of simple, accurate, and rapid devices with higher sensitivity remains challenging. Here, we report a novel method for 3D-μPAD fabrication with enclosed channels using vat photopolymerization to avoid fluid evaporation. In detail, height of the enclosed channels was adjusted from 0.3 to 0.17 mm by varying the UV exposure time from 1 to 4 s for the top barrier, whereas the exposure time for the bottom and side barriers was fixed. As a result, sample flow in the enclosed channels of 3D-μPADs showed lesser wicking speed with very scant evaporation compared to that in the hemi channels in the 3D-μPADs. The stoppage of evaporation in the enclosed channels significantly improved the gray intensity and uniformity in the detection zone of the 3D-μPADs, resulting in as low as 0.3 mM glucose detection. Thus 3D-μPADs with enclosed channels showed enhanced sensitivity compared to the 3D-μPADs with hemi channels when dealing with a small volume sample. Our work provides a new insight into 3D-μPAD design with enclosed channels, which redefines the methodology in 3D printing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229230PMC
http://dx.doi.org/10.3390/diagnostics11060977DOI Listing

Publication Analysis

Top Keywords

enclosed channels
28
channels
9
microfluidic paper-based
8
paper-based analytical
8
analytical devices
8
point-of-care testing
8
exposure time
8
channels 3d-μpads
8
hemi channels
8
enclosed
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!