Citric acid (CA), as an organic chelator, plays a vital role in alleviating copper (Cu) stress-mediated oxidative damage, wherein a number of molecular mechanisms alter in plants. However, it remains largely unknown how CA regulates differentially abundant proteins (DAPs) in response to Cu stress in L. In the present study, we aimed to investigate the proteome changes in the leaves of L. seedlings in response to CA-mediated alleviation of Cu stress. Exposure of 21-day-old seedlings to Cu (25 and 50 μM) and CA (1.0 mM) for 7 days exhibited a dramatic inhibition of overall growth and considerable increase in the enzymatic activities (POD, SOD, CAT). Using a label-free proteome approach, a total of 6345 proteins were identified in differentially treated leaves, from which 426 proteins were differentially expressed among the treatment groups. Gene ontology (GO) and KEGG pathways analysis revealed that most of the differential abundance proteins were found to be involved in energy and carbohydrate metabolism, photosynthesis, protein metabolism, stress and defense, metal detoxification, and cell wall reorganization. Our results suggest that the downregulation of chlorophyll biosynthetic proteins involved in photosynthesis were consistent with reduced chlorophyll content. The increased abundance of proteins involved in stress and defense indicates that these DAPs might provide significant insights into the adaptation of Brassica seedlings to Cu stress. The abundances of key proteins were further verified by monitoring the mRNA expression level of the respective transcripts. Taken together, these findings provide a potential molecular mechanism towards Cu stress tolerance and open a new route in accelerating the phytoextraction of Cu through exogenous application of CA in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198124PMC
http://dx.doi.org/10.3390/ijms22115879DOI Listing

Publication Analysis

Top Keywords

proteins involved
12
proteome changes
8
citric acid
8
abundance proteins
8
stress defense
8
proteins
7
stress
6
changes reveal
4
reveal protective
4
protective roles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!