The effects of charge compensation on dielectric and electrical properties of CaCuTi(AlTaNb)O ceramics ( = 0-0.05) prepared by a solid-state reaction method were studied based on the configuration of defect dipoles. A single phase of CaCuTiO was observed in all ceramics with a slight change in lattice parameters. The mean grain size of CaCuTi(AlTaNb)O ceramics was slightly smaller than that of the undoped ceramic. The dielectric loss tangent can be reduced by a factor of 13 (tanδ ~0.017), while the dielectric permittivity was higher than 10 over a wide frequency range. Impedance spectroscopy showed that the significant decrease in tanδ was attributed to the highly increased resistance of the grain boundary by two orders of magnitude. The DFT calculation showed that the preferential sites of Al and Nb/Ta were closed together in the Ti sites, forming self-charge compensation, and resulting in the enhanced potential barrier height at the grain boundary. Therefore, the improved dielectric properties of CaCuTi(AlTaNb)O ceramics associated with the enhanced electrical properties of grain boundaries. In addition, the non-Ohmic properties were also improved. Characterization of the grain boundaries under a DC bias showed the reduction of potential barrier height at the grain boundary. The overall results indicated that the origin of the colossal dielectric properties was caused by the internal barrier layer capacitor structure, in which the Schottky barriers at the grain boundaries were formed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199195 | PMC |
http://dx.doi.org/10.3390/molecules26113294 | DOI Listing |
Materials (Basel)
December 2024
Department of Marine Design Convergence Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
Controlling microstructure and texture development is a key approach to improving the formability of magnesium alloys. In this study, the effects of the strain rate and initial texture on the texture evolution of magnesium alloys during high-temperature processing are investigated. The plane strain compression of three types of AZ80 magnesium alloys with different initial textures was assessed at 723 K and a train rate of 0.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Physics and Electronic Information, Yantai University, Yantai 264005, China.
In this study, we synthesized perovskite BaSrSnO ceramics with a unique thorn-like microstructure using the solid-state reaction method. The structural and complex dielectric properties were investigated in detail. X-ray diffraction was employed to characterize the phase purity, while X-ray photoelectron spectroscopy was used to analyze the chemical state of the components.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
Pure copper (Cu) is widely used across numerous industries owing to its exceptional thermal and electrical conductivity. Additive manufacturing has facilitated the rapid and cost-effective prototyping of Cu components. Laser powder bed fusion (LPBF) has demonstrated the capability to produce intricate Cu components.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China.
The ultraprecision machining of diamond presents certain difficulties due to its extreme hardness. However, the graphitization modification can enhance its machinability. This work presents an investigation into the characteristics of the graphitization modification in polycrystalline diamond induced by a nanosecond pulsed laser.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
In this paper, in order to investigate the harmonious relationship between the compression deformation behavior of metastable β titanium alloy and the microstructure evolution, the β solution-treated Ti-10V-2Fe-3Al (Ti-1023) alloy was compressed at room temperature and its deformation behavior was analyzed. Optical microscopy (OM) and field emission electron microscopy (FESEM) were used to study the microstructure evolution of alloys at different strain rates. The results show that the stress-induced martensite transformation (SIMT) is more easily activated by low strain rate compression deformation, which is conducive to improving its comprehensive mechanical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!