Ischemic heart disease is one of the leading causes of deaths worldwide. A major hindrance to resolving this challenge lies in the mammalian hearts inability to regenerate after injury. In contrast, zebrafish retain a regenerative capacity of the heart throughout their lifetimes. Apex resection (AR) is a popular zebrafish model for studying heart regeneration, and entails resecting 10-20% of the heart in the apex region, whereafter the regeneration process is monitored until the heart is fully regenerated within 60 days. Despite this popularity, video tutorials describing this technique in detail are lacking. In this paper we visualize and describe the entire AR procedure including anaesthesia, surgery, and recovery. In addition, we show that the concentration and duration of anaesthesia are important parameters to consider, to balance sufficient levels of sedation and minimizing mortality. Moreover, we provide examples of how zebrafish heart regeneration can be assessed both in 2D (immunohistochemistry of heart sections) and 3D (analyses of whole, tissue cleared hearts using multiphoton imaging). In summary, this paper aims to aid beginners in establishing and conducting the AR model in their laboratory, but also to spur further interest in improving the model and its evaluation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199168 | PMC |
http://dx.doi.org/10.3390/ijms22115865 | DOI Listing |
J Cardiovasc Transl Res
January 2025
Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis.
View Article and Find Full Text PDFBiomolecules
January 2025
Heart and Vascular Institute, Pennsylvania State University Hershey Medical Center, Hershey, PA 17033, USA.
Immuno-fibrotic networks and their protein mediators, such as cytokines and chemokines, have increasingly been appreciated for their critical role in cardiac healing and fibrosis during cardiomyopathy. Immune activation, trafficking, and extravasation are tightly regulated to ensure a targeted and effective response against non-self antigens/pathogens while preserving tolerance towards self-antigens and coordinate fibrotic responses for efficient scar formation, a distinction that is severely compromised during chronic diseases. It is clear that immune cells are not only the critical regulators of post-infarct healing and scarring but are also the key players in regulating fibroblast activation during left-ventricular (LV) remodeling.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China.
Objective: To explore the application effectiveness of multidisciplinary team (MDT) in the diagnosis and treatment of chronic refractory wounds, and to provide new ideas for optimizing the clinical diagnosis and treatment of such diseases.
Methods: A retrospective analysis was performed on the clinical data of patients with chronic refractory wounds who underwent surgery at Peking University Third Hospital from January 2015 to October 2023, and a total of 456 patients, including 290 males and 166 females, with an average age of (49.4±16.
Stem Cell Reports
January 2025
Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada; Ajmera Transplant Center, University Health Network, Toronto, ON, Canada. Electronic address:
People with type 2 diabetes (T2D) are at a higher risk for myocardial infarction (MI) than age-matched healthy individuals. Here, we studied cell-based cardiac regeneration post MI in T2D rats modeling the co-morbid conditions in patients with MI. We recapitulated the T2D hallmarks and clinical aspects of diabetic cardiomyopathy using high-fat diet and streptozotocin in athymic rats, which were then subjected to MI and intramyocardial implantation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with or without rat adipose-derived microvessels (MVs).
View Article and Find Full Text PDFGels
January 2025
Laboratory of Immunotherapy and Tissue Engineering, Department of Cellular and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico, Av. Universidad 3000, Copilco Universidad, Coyoacán, Ciudad de México 04510, Mexico.
Currently, there are no therapies that prevent the negative myocardial remodeling process that occurs after a heart attack. Injectable hydrogels are a treatment option because they may replace the damaged extracellular matrix and, in addition, can be administered minimally invasively. Reactive oxygen species generated by ischemia-reperfusion damage can limit the therapeutic efficacy of injectable hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!