Over the last decade, zirconia (ZrO)-based ceramic materials have become more applicable to modern dental medicine due to the sustained development of diverse computer-aided design/computer-aided manufacturing (CAD/CAM) systems. However, before the cementation and clinical application, the freshly prepared zirconia material (e.g., crowns) has to be processed by sandblasting in the dental laboratory. In this work, the impact of the sandblasting on the zirconia is monitored as changes in morphology (i.e., grains and cracks), and the presence of impurities might result in a poor adhesive bonding with cement. The sandblasting is conducted by using AlO powder (25, 50, 110 and 125 µm) under various amounts of air-abrasion pressure (0.1, 0.2, 0.4 and 0.6 MPa). There has been much interest in both the determination of the impact of the sandblasting on the zirconia phase transformations and conductivity. Morphology changes are observed by using Scanning Electron Microscope (SEM), the conductivity is measured by Impedance Spectroscopy (IS), and the phase transformation is observed by using Powder X-Ray Diffraction (PXRD). The results imply that even the application of the lowest amount of air-abrasion pressure and the smallest AlO powder size yields a morphology change, a phase transformation and a material contamination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199191 | PMC |
http://dx.doi.org/10.3390/ma14112834 | DOI Listing |
Dent Mater
January 2025
Department of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK; Photon Science Institute, University of Manchester, Manchester M13 9PL, UK. Electronic address:
Objective: To assess the impact of mechanical decontamination using rotary brushes on the surface topography, elemental composition, roughness, and wettability of titanium implant surfaces.
Methods: Four commercially available rotary brushes were used: Labrida BioClean Brush® (LB), i-Brush1 (IB), NiTiBrush Nano (NiTiB), and Peri-implantitis Brush (PIB). Seventy-five titanium discs with sandblasted, large-grit, acid-etched (SLA) surfaces were randomly assigned to five groups (n = 15): LB, IB, NiTiB, PIB, and a control group.
ACS Omega
December 2024
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China.
Metal 3D printing has been used in the manufacturing of dental implants. Its technical advantages include high material utilization and the capacity to form arbitrarily complex structures. However, 3D printing alone is insufficient for manufacturing two-stage titanium implants due to the limited precision in printing titanium alloy parts.
View Article and Find Full Text PDFJ Long Term Eff Med Implants
December 2024
Department of Periodontology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
Although the surface modifications of the implant have been widely proposed to enhance the osseointegration, their impact on microbial adhesion is still not explored. The present in vitro study was done to compare the bacterial adhesion of S. mutans and Enterococcus faecalis on sand-blasted acid-etched and anodized titanium dental implants.
View Article and Find Full Text PDFOdontology
December 2024
Department of Occlusion, Fixed Prosthodontics and Dental Materials, School of Dentistry, Federal University of Uberlandia, Av. Pará, 1720, Bloco 4L, Anexo A, sala 4LA-42, Campus Umuarama, Uberlândia, Minas Gerais, 38405-320, Brazil.
The purpose of this study was to evaluate the impact of various mechanical surface treatments on the surface roughness and microtensile bond strength (µTBS) of aged composite resin cores bonded to CAD/CAM restorations. Composite resin specimens (Filtek Z350 XT, 3M-ESPE/Solventum) were thermally aged and subsequently divided into four groups (n = 36) according to surface treatments: UI-cleaning with ultrasonic diamond tip; AO-sandblasting with 50 µm AlO; DB-cleaning with diamond burs; and CG-positive control group, without aging or surface treatment. Surface roughness was assessed using a profilometer and interferometer, with measurements taken on both sides of each specimen (n = 12).
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego St. 6, 44-100 Gliwice, Poland.
This study evaluated the bone-to-implant contact (BIC) of various surface-treated dental implants using high-resolution micro-CT in rabbit bone, focusing on the effects of different treatments on osseointegration and implant stability before and after bone demineralization. Six male New Zealand White rabbits were used. Four implant types were tested: machined surface with anodizing, only etching, sandblasting with AlO + etching, and sandblasting with TiO + etching.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!