The aim of this article is to present a nonconventional method for the efficient removal of lead ions from industrial wastewater. For this purpose, magnetite nanomaterial was used, which was very easily separated from the wastewater at the end of the treatment due to its magnetic properties. Currently, nanotechnology is an efficient and inexpensive manner that is being researched for wastewater treatment. Additionally, iron oxide nanoparticles are widely used to remove heavy metal ions from water due to their special properties. The experimental results detailed in this article show the influence of pH and contact time on the process of adsorption of lead ions from wastewater. The magnetite nanomaterial had its maximum efficiency of speed when the wastewater had pH 6. At a lower pH, the highest treatment efficiency was over 85%, and the required contact time has doubled. When the pH increases above 6, the precipitation process occurs. Langmuir and Freundlich models were used to describe the adsorption process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197980PMC
http://dx.doi.org/10.3390/ma14112831DOI Listing

Publication Analysis

Top Keywords

lead ions
12
industrial wastewater
8
magnetite nanomaterial
8
wastewater treatment
8
contact time
8
wastewater
6
magnetite oxide
4
oxide nanomaterial
4
nanomaterial lead
4
ions
4

Similar Publications

Development of detection system for lead ions in mixture solutions using UV-Vis measurements with peptide immobilized microbeads.

Sci Rep

January 2025

Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, 650-0047, Hyogo, Japan.

Environmental pollution caused by heavy metals are problems worldwide. In particular, pollution and poisoning by lead ions (Pb) continue to be common and serious problems. Hence, there is a need for a widely usable method to easily detect Pb from solutions containing organic materials from environmental water such as seas, ponds, etc.

View Article and Find Full Text PDF

A chitosan-based sensing membrane for on-site and sensitive dual-channel portable detection and efficient adsorption of Pb in groundwater.

Anal Chim Acta

February 2025

State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China. Electronic address:

The presence of lead ion (Pb) in groundwater poses a serious risk to human health, even at low levels. Therefore, it is essential to develop a new strategy for both selective detection and effective removal of Pb in groundwater, which has been rarely reported. Here, we developed a multi-functional chitosan-based fluorescent sensing membrane (CM-L/CG) by using a casting method for the sensitive/selective detection and removal of Pb in groundwater.

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Preparation and Performance Research of Pb(II)-Imprinted Acrylonitrile-Co-Acrylic Acid Composite Material with Modified Sand Particles as Carrier.

Polymers (Basel)

January 2025

Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, School of Chemical Engineering, Xinjiang University, Urumqi 830017, China.

Lead (Pb) is classified as a prevalent metallic pollutant, significantly impacting the ecological environment, especially human health. Consequently, it is crucial to develop adsorbent materials that are environmentally friendly, cost-effective, and which possess high selectivity. This study aims to fabricate a Pb(II)-imprinted acrylonitrile-co-acrylic acid composite material by using modified sand particles as the carrier, and then to investigate its properties.

View Article and Find Full Text PDF

Systemic Mechanisms of Ionic Regulation in Carcinogenesis.

Cancers (Basel)

January 2025

Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

Cancer is a complex disease characterized by uncontrolled cell proliferation at various levels, leading to tumor growth and spread. This review focuses on the role of ion homeostasis in cancer progression. It describes a model of ion-mediated regulation in both normal and cancerous cell proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!