Cholangiocarcinomas (CCAs) are heterogeneous biliary tract malignancies with dismal prognosis, mainly due to tumor aggressiveness, late diagnosis, and poor response to current therapeutic options. High-throughput technologies have been used as a fundamental tool in unveiling CCA molecular landscape, and several molecular classifications have been proposed, leading to various targeted therapy trials. In this review, we aim to analyze the critical issues concerning the status of precision medicine in CCA, discussing molecular signatures and clusters, related to both anatomical classification and different etiopathogenesis, and the latest therapeutic strategies. Furthermore, we propose an integrated approach comprising the CCA molecular mechanism, pathobiology, clinical and histological findings, and treatment perspectives for the ultimate purpose of improving the methods of patient allocations in clinical trials and the response to personalized therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199244PMC
http://dx.doi.org/10.3390/ijms22115613DOI Listing

Publication Analysis

Top Keywords

molecular landscape
8
therapeutic strategies
8
precision medicine
8
cca molecular
8
molecular
5
landscape therapeutic
4
strategies cholangiocarcinoma
4
cholangiocarcinoma integrated
4
integrated translational
4
translational approach
4

Similar Publications

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

This study enrolled 10 patients diagnosed with premalignant lesions and early-stage gastric cardia adenocarcinoma (GCA), confirmed through endoscopic examination. These patients were subjected to next-generation sequencing (NGS) using a customized 1123-gene panel to identify genetic alterations and signaling pathways. The results were compared to stage IIB to IV GCA samples from the cancer genome atlas (TCGA) and a cohort of Hong Kong patients.

View Article and Find Full Text PDF

Endosomes play a pivotal role in cellular biology, orchestrating processes such as endocytosis, molecular trafficking, signal transduction, and recycling of cellular materials. This study aims to construct an endosome-related gene (ERG)-derived risk signature for breast cancer prognosis. Transcriptomic and clinical data were retrieved from The Cancer Genome Atlas and the University of California Santa Cruz databases to build and validate the model.

View Article and Find Full Text PDF

There is a growing interest in harnessing natural compounds and bioactive phytochemicals to accelerate drug discovery and development, including in the treatment of human cancers. Receptor tyrosine kinases (RTKs) are critical regulators of many fundamental cellular processes and have been implicated in cancer pathogenesis as well as targets for anticancer drug development. The members of TAM, Tyro3, Axl, and MERTK subfamily RTKs, especially Mer, affect immune homeostasis in the tumor microenvironment.

View Article and Find Full Text PDF

Background: Cryoablation induces antitumor immune responses. Spatial transcriptomic landscape technology has been used to determine the micron-level panoramic transcriptomics of tissue slices in situ.

Methods: The effects of cryoablation on the immune microenvironment in non-small cell lung cancer (NSCLC) were explored by comparing the Whole Transcriptome Atlas (WTA) panel of immune cells before and after cryoablation using the spatial transcriptomic landscape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!