Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes coronavirus disease 2019 (COVID-19). The outbreak of this coronavirus was first identified in Wuhan (Hubei, China) in December 2019, and it was declared as pandemic by the World Health Organization (WHO) in March 2020. Today, several vaccines against SARS-CoV-2 have been approved, and some neutralizing monoclonal antibodies are being tested as therapeutic approaches for COVID-19 but, one of the key questions is whether both vaccines and monoclonal antibodies could be effective against infections by new SARS-CoV-2 variants. Nevertheless, there are currently more than 1000 ongoing clinical trials focusing on the use and effectiveness of antiviral drugs as a possible therapeutic treatment. Among the classes of antiviral drugs are included 3CL protein inhibitors, RNA synthesis inhibitors and other small molecule drugs which target the ability of SARS-COV-2 to interact with host cells. Considering the need to find specific treatment to prevent the emergent outbreak, the aim of this review is to explain how some repurposed antiviral drugs, indicated for the treatment of other viral infections, could be potential candidates for the treatment of COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228036 | PMC |
http://dx.doi.org/10.3390/ph14060503 | DOI Listing |
Chem Biodivers
January 2025
Universidad Nacional del Litoral Facultad de Bioquimica y Ciencias Biologicas, Química Orgánica, Ciudad Universitaria. Paraje el Pozo S/N, Argentina, 3000, Santa Fe, ARGENTINA.
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has highlighted the urgent need for novel therapeutic agents targeting viral enzymes such as the main protease (Mpro), which plays a crucial role in viral replication. In this study, we investigate the inhibitory potential of 23 peptides isolated from the skin of amphibians belonging to the Hylidae and Leptodactylidae families against SARS-CoV-2 Mpro. Five peptides demonstrated significant inhibition using a colorimetric Mpro inhibition assay, with IC50 values ranging from 41 to 203 µM.
View Article and Find Full Text PDFPLoS One
January 2025
Departments of Public Health, Institute of Health Sciences, Wollega University, Ethiopia.
Introduction: The mortality rate among Human immunodeficiency Virus (HIV) who have started antiretroviral therapy (ART) continues to be increased in resource-limited countries, despite a decline in developed nations. Furthermore, research within this age group is limited and has not previously been conducted in the study area. Consequently, this study aimed to determine the incidence of mortality and its predictors among HIV-positive children who have been receiving ART at public health facilities in West Wollega.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
Tigilanol tiglate (EBC-46) is a selective modulator of protein kinase C (PKC) isoforms that is Food and Drug Administration (FDA) approved for the treatment of mast cell tumors in canines with up to an 88% cure rate. Recently, it has been FDA approved for the treatment of soft tissue sarcomas in humans. The role of EBC-46 and, especially, its analogs in efforts to eradicate HIV, treat neurological and cardiovascular disorders, or enhance antigen density in antigen-targeted chimeric antigen receptor-T cell and chimeric antigen receptor-natural killer cell immunotherapies has not been reported.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.
View Article and Find Full Text PDFPLoS One
January 2025
Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.
T-cell response plays an important role in SARS-CoV-2 immunogenicity. For people living with HIV (PWH) and solid organ transplant (SOT) recipients there is limited evidence on the reliability of commercially available T-cell tests. We assessed 173 blood samples from 81 participants (62 samples from 35 PWH; 111 samples from 46 SOT recipients [lung and kidney]) with two commercial SARS-CoV-2 Interferon-γ (IFN-γ) release assays (IGRA; SARS-CoV-2 IGRA by Euroimmun, and IGRA SARS-CoV-2 by Roche).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!