Bringing together a Riemannian geometry account of visual space with a complementary account of human movement synergies we present a neurally-feasible computational formulation of visuomotor task performance. This cohesive geometric theory addresses inherent nonlinear complications underlying the match between a visual goal and an optimal action to achieve that goal: (i) the warped geometry of visual space causes the position, size, outline, curvature, velocity and acceleration of images to change with changes in the place and orientation of the head, (ii) the relationship between head place and body posture is ill-defined, and (iii) mass-inertia loads on muscles vary with body configuration and affect the planning of minimum-effort movement. We describe a partitioned visuospatial memory consisting of the warped posture-and-place-encoded images of the environment, including images of visible body parts. We depict synergies as low-dimensional submanifolds embedded in the warped posture-and-place manifold of the body. A task-appropriate synergy corresponds to a submanifold containing those postures and places that match the posture-and-place-encoded visual images that encompass the required visual goal. We set out a reinforcement learning process that tunes an error-reducing association memory network to minimize any mismatch, thereby coupling visual goals with compatible movement synergies. A simulation of a two-degrees-of-freedom arm illustrates that, despite warping of both visual space and posture space, there exists a smooth one-to-one and onto invertible mapping between vision and proprioception.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163178 | PMC |
http://dx.doi.org/10.3390/vision5020026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!