The present paper is focused on evaluating the most suitable dispersion method in the epoxy matrix of two self-healing systems containing dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB) monomers encapsulated in a urea-formaldehyde (UF) shell, prior to integration, fabrication and impact testing of specimens. Both microstructural analysis and three-point bending tests were performed to evaluate and assess the optimum dispersion method. It was found that ultrasonication damages the microcapsules of both healing systems, thus magnetic stirring was used for the dispersion of both healing systems in the epoxy matrix. Using magnetic dispersion, 5%, 7%, 10%, 12% and 15% volumes of microcapsules were embedded in glass fibre composites. Some of the samples were subjected to thermal cycling between -20 °C and +100 °C for 8 h, to evaluate the behaviour of both healing systems after temperature variation. Impact test results showed that the mechanical behaviour decreases with increasing microcapsule volume, while for specimens subjected to thermal cycling, the impact strength increases with microcapsule volume up to 10%, after which a severe drop in impact strength follows. Retesting after 48 h shows a major drop in mechanical properties in specimens containing 15% MUF-ENB microcapsules, up to total penetration of the specimen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158778PMC
http://dx.doi.org/10.3390/polym13101642DOI Listing

Publication Analysis

Top Keywords

healing systems
12
mechanical behaviour
8
glass fibre
8
fibre composites
8
self-healing systems
8
dispersion method
8
epoxy matrix
8
subjected thermal
8
thermal cycling
8
microcapsule volume
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!