In order to accurately diagnose the health of high-order statically indeterminate structures, most existing structural health monitoring (SHM) methods require multiple sensors to collect enough information. However, comprehensive data collection from multiple sensors for high degree-of-freedom structures is not typically available in practice. We propose a method that reconciles the two seemingly conflicting difficulties. Takens' embedding theorem is used to augment the dimensions of data collected from a single sensor. Taking advantage of the success of machine learning in image classification, high-dimensional reconstructed attractors were converted into images and fed into a convolutional neural network (CNN). Attractor classification was performed for 10 damage cases of a 3-story shear frame structure. Numerical results show that the inherently high dimension of the CNN model allows the handling of higher dimensional data. Information on both the level and the location of damage was successfully embedded. The same methodology will allow the extraction of data with unsupervised CNN classification to be consistent with real use cases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158099PMC
http://dx.doi.org/10.3390/s21103514DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
neural network
8
structural health
8
health monitoring
8
multiple sensors
8
high-dimensional phase
4
phase space
4
space reconstruction
4
reconstruction convolutional
4
network structural
4

Similar Publications

This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodological novelty, were used to relate features highlighted in the saliency maps to the geometrical clues that experts consider in glaucoma diagnosis. Despite their simplicity, these images retained sufficient information for accurate classification, with balanced accuracies ranging from 0.

View Article and Find Full Text PDF

Semantical text understanding holds significant importance in natural language processing (NLP). Numerous datasets, such as Quora Question Pairs (QQP), have been devised for this purpose. In our previous study, we developed a Siamese Convolutional Neural Network (S-CNN) that achieved an F1 score of 82.

View Article and Find Full Text PDF

Significance: Optimal meibography utilization and interpretation are hindered due to poor lid presentation, blurry images, or image artifacts and the challenges of applying clinical grading scales. These results, using the largest image dataset analyzed to date, demonstrate development of algorithms that provide standardized, real-time inference that addresses all of these limitations.

Purpose: This study aimed to develop and validate an algorithmic pipeline to automate and standardize meibomian gland absence assessment and interpretation.

View Article and Find Full Text PDF

Introduction: A large number of middle-aged and elderly patients have an insufficient understanding of osteoporosis and its harm. This study aimed to establish and validate a convolutional neural network (CNN) model based on unenhanced chest computed tomography (CT) images of the vertebral body and skeletal muscle for opportunistic screening in patients with osteoporosis.

Materials And Methods: Our team retrospectively collected clinical information from participants who underwent unenhanced chest CT and dual-energy X-ray absorptiometry (DXA) examinations between January 1, 2022, and December 31, 2022, at four hospitals.

View Article and Find Full Text PDF

This paper investigates the potential of artificial intelligence (AI) and machine learning (ML) to enhance the differentiation of cystic lesions in the sellar region, such as pituitary adenomas, Rathke cleft cysts (RCCs) and craniopharyngiomas (CP), through the use of advanced neuroimaging techniques, particularly magnetic resonance imaging (MRI). The goal is to explore how AI-driven models, including convolutional neural networks (CNNs), deep learning, and ensemble methods, can overcome the limitations of traditional diagnostic approaches, providing more accurate and early differentiation of these lesions. The review incorporates findings from critical studies, such as using the Open Access Series of Imaging Studies (OASIS) dataset (Kaggle, San Francisco, USA) for MRI-based brain research, highlighting the significance of statistical rigor and automated segmentation in developing reliable AI models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!