Changes in the gut microbiome have been associated with inflammatory bowel disease. A protective role of short chain fatty acids produced by the gut microbiota has been suggested as a causal mechanism. Nevertheless, multi-omic analyses have failed to identify a clear link between changes in specific taxa and disease states. Recently, metagenomic analyses unveiled that gut bacterial species have a previously unappreciated genomic diversity, implying that a geno-centric approach may be better suited to identifying the mechanisms involved. Here, we quantify the abundance of terminal genes in propionate-producing fermentative pathways in the microbiome of a large cohort of healthy subjects and patients with inflammatory bowel disease. The results show that propionate kinases responsible for propionate production in the gut are depleted in patients with Crohn's disease. Our results also indicate that changes in overall species abundances do not necessarily correlate with changes in the abundances of metabolic genes, suggesting that these genes are not part of the core genome. This, in turn, suggests that changes in strain composition may be as important as changes in species abundance in alterations of the gut microbiome associated with pathological conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157882 | PMC |
http://dx.doi.org/10.3390/jcm10102176 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!