This study concerned the quality of mini-tablets' coating uniformity obtained by either the bottom spray chamber with a classical Wurster distributor (CW) or a swirl distributor (SW). Mini-tablets with a diameter of 2.0, 2.5, and 3.0 mm were coated with hypromellose using two different inlet air distributors as well as inlet airflow rates (130 and 156 m/h). Tartrazine was used as a colorant in the coating layer and the coating uniformity was assessed by spectrophotometric analysis of solutions obtained after disintegration of the mini-tablets (n = 100). Higher uniformity of coating material distribution among the mini-tablets was observed in the case of SW distributor, even for the biggest mini-tablets (d = 3.0 mm), with an RSD no larger than 5.0%. Additionally, coating thickness was evaluated by colorimetric analysis (n = 1000), using a scanner method, and expressed as a hue value. A high correlation (R = 0.993) between inter-tablet variability of hue and UV-Vis results was obtained. Mini-tablets were successfully coated in a fluid bed system using both a classical Wurster distributor as well as a swirl generator. However, regardless of the mini-tablets' diameter, better film uniformity was achieved in the case of a distributor with a swirl generator.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157842 | PMC |
http://dx.doi.org/10.3390/pharmaceutics13050746 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
The adoption of carbon capture, utilization, and storage (CCUS) technology is increasingly prevalent, driven by the global initiative to conserve energy and reduce emissions. Nevertheless, CCUS has the potential to induce corrosion in equipment, particularly in high-pressure environments containing carbon dioxide (CO). Therefore, anti-corrosion protection is necessary for the metal utilized for CO production and storage equipment.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States.
Quantum dot (QD) light-emitting diodes (QLEDs) are promising candidates for next-generation displays because of their high efficiency, brightness, broad color gamut, and solution-processability. Large-scale solution-processing of electroluminescent QLEDs poses significant challenges, particularly concerning the precise control of the active layer's thickness and uniformity. These obstacles directly impact charge transport, leading to current leakage and reduced overall efficiency.
View Article and Find Full Text PDFACS Electrochem
January 2025
Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
We demonstrate the application and benefit of optically transparent carbon electrodes (OTCEs) for single entity nanoelectrochemistry. OTCEs are prepared by pyrolyzing thin photoresist films on fused quartz coverslips to create conductive, transparent, thin films. Optical, electrical, topographical, and electrochemical properties of OTCEs are characterized to evaluate their suitability for single entity electrochemistry.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Materials, Nanotechnologies and Environment, Center of Sciences of Materials, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP:1014, 10000, Rabat, Morocco.
In this study, novel polyaniline-coated perovskite nanocomposites (PANI@CoTiO and PANI@NiTiO) were synthesized using an in situ oxidative polymerization method and evaluated for the photocatalytic degradation of Rhodamine B (RhB) a persistent organic pollutant. The nanocomposites displayed significantly enhanced photocatalytic efficiency compared to pure perovskites. The 1%wt PANI@NiTiO achieved an impressive 94% degradation of RhB under visible light after 180 min, while 1wt.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Colour Science and Textile Chemistry Research Center, College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China.
Superhydrophobic fabrics suffer from being commonly penetrated by moisture after laundering, seriously deteriorating their water repellency after air drying. Numerous researchers have successfully recovered superhydrophobicity by drying in fluid ovens; however, high energy consumption and equipment dependence limit practical applications. Herein, the superhydrophobic photothermal self-healing cotton fabric (SPS cotton fabric) was fabricated by depositing a composite layer of cellulose nanocrystal-MXene (C-MXene) and polyacrylate (PA) coatings on the cotton cloth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!