Expression of bronchodilatory β-adrenoceptors and bronchoconstrictive muscarinic M-receptors alter with airway size. In COPD, (a combination of) β-agonists and muscarinic M-antagonists (anticholinergics) are used as bronchodilators. We studied whether differential receptor expression in large and small airways affects the response to β-agonists and anticholinergics in COPD. Bronchoprotection by indacaterol (β-agonist) and glycopyrrolate (anticholinergic) against methacholine- and EFS-induced constrictions of large and small airways was measured in guinea pig and human lung slices using video-assisted microscopy. In guinea pig lung slices, glycopyrrolate (1, 3 and 10 nM) concentration-dependently protected against methacholine- and EFS-induced constrictions, with no differences between large and small intrapulmonary airways. Indacaterol (0.01, 0.1, 1 and 10 μM) also provided concentration-dependent protection, which was greater in large airways against methacholine and in small airways against EFS. Indacaterol (10 μM) and glycopyrrolate (10 nM) normalized small airway hyperresponsiveness in COPD lung slices. Synergy of low indacaterol (10 nM) and glycopyrrolate (1 nM) concentrations was greater in LPS-challenged guinea pigs (COPD model) compared to saline-challenged controls. In conclusion, glycopyrrolate similarly protects large and small airways, whereas the protective effect of indacaterol in the small, but not the large, airways depends on the contractile stimulus used. Moreover, findings in a guinea pig model indicate that the synergistic bronchoprotective effect of indacaterol and glycopyrrolate is enhanced in COPD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157597PMC
http://dx.doi.org/10.3390/cells10051237DOI Listing

Publication Analysis

Top Keywords

large small
16
small airways
16
guinea pig
12
lung slices
12
methacholine- efs-induced
8
efs-induced constrictions
8
large airways
8
indacaterol glycopyrrolate
8
indacaterol
7
glycopyrrolate
7

Similar Publications

Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.

View Article and Find Full Text PDF

Background: Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells.

View Article and Find Full Text PDF

Background: The magnitude of inbreeding depression depends on the recessive burden of the individual, which can be traced back to the hidden (recessive) inbreeding load among ancestors. However, these ancestors carry different alleles at potentially deleterious loci and therefore there is individual variability of this inbreeding load. Estimation of the additive genetic value for inbreeding load is possible using a decomposition of inbreeding in partial inbreeding components due to ancestors.

View Article and Find Full Text PDF

Despite significant advancements in gene delivery and CRISPR technology, several challenges remain. Chief among these are overcoming serum inhibition and achieving high transfection efficiency with minimal cytotoxicity. To address these issues, there is a need for novel vectors that exhibit lower toxicity, maintain stability in serum-rich environments, and effectively deliver plasmids of various sizes across diverse cell types.

View Article and Find Full Text PDF

The issue of whether a salient stimulus in the visual field captures attention in a stimulus-driven manner has been debated for several decades. The attentional window account proposed to resolve this issue by claiming that a salient stimulus captures attention and interferes with target processing only when an attentional window is set wide enough to encompass both the target and the salient distractor. By contrast, when a small attentional window is serially shifted among individual stimuli to find a target, no capture is found.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!