Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the North Eastern Himalayan region (NEHR) of India, maize is an important food crop. The local people cultivate the maize landraces and consume them as food. However, these landraces are deficient in β-carotene content. Thus, we aimed to incorporate the gene from UMI285β into the genetic background of the NEHR maize landrace, Yairipok Chujak (CAUM66), and thereby enhance the β-carotene content through marker-assisted backcrossing (MABC). In this regard, we backcrossed and screened BCF and BCF plants possessing the heterozygous allele for and then screened with 106 polymorphic simple sequence repeat (SSR) markers. The plants having maximum recurrent parent genome recovery (RPGR) were selected in each generation and selfed to produce BCF seeds. In the BCF generation, four plants (CAUM66-54-9-12-2, CAUM66-54-9-12-11, CAUM66-54-9-12-13, and CAUM66-54-9-12-24) having homozygous -favorable allele with maximum RPGR (86.74-90.16%) were selected and advanced to BCF. The four selected plants were selfed to produce BCF and then evaluated for agronomic traits and β-carotene content. The agronomic performance of the four lines was similar (78.83-99.44%) to that of the recurrent parent, and β-carotene content (7.541-8.711 μg/g) was on par with the donor parent. Our study is the first to improve the β-carotene content in NEHR maize landrace through MABC. The newly developed lines could serve as potential resources to further develop nutrition-rich maize lines and could provide genetic stock for use in breeding programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157291 | PMC |
http://dx.doi.org/10.3390/genes12050762 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!