Fourier-transform mid-infrared spectrometry is an attractive technology for screening adulterated liquid milk products. So far, studies on how infrared spectroscopy can be used to screen spectra for atypical milk composition have either used targeted methods to test for specific adulterants, or have used untargeted screening methods that do not reveal in what way the spectra are atypical. In this study, we evaluate the potential of combining untargeted screening methods with cluster algorithms to indicate in what way a spectrum is atypical and, if possible, why. We found that a combination of untargeted screening methods and cluster algorithms can reveal meaningful and generalizable categories of atypical milk spectra. We demonstrate that spectral information (e.g., the compositional milk profile) and meta-data associated with their acquisition (e.g., at what date and which instrument) can be used to understand in what way the milk is atypical and how it can be used to form hypotheses about the underlying causes. Thereby, it was indicated that atypical milk screening can serve as a valuable complementary quality assurance tool in routine FTIR milk analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157011PMC
http://dx.doi.org/10.3390/foods10051111DOI Listing

Publication Analysis

Top Keywords

cluster algorithms
12
atypical milk
12
untargeted screening
12
screening methods
12
milk
8
milk screening
8
combining untargeted
8
spectra atypical
8
methods cluster
8
screening
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!