Alzheimer's disease (AD) affects tens of millions of people worldwide. Despite the advances in understanding the disease, there is an increased urgency for pharmacological approaches able of impacting its onset and progression. With a multifactorial nature, high incidence and prevalence in later years of life, there is growing evidence highlighting a relationship between metabolic dysfunction related to diabetes and subject's susceptibility to develop AD. The link seems so solid that sometimes AD and type 3 diabetes are used interchangeably. A candidate for a shared pathogenic mechanism linking these conditions is chronically-activated mechanistic target of rapamycin (mTOR). Chronic activation of unrestrained mTOR could be responsible for sustaining metabolic dysfunction that causes the breakdown of the blood-brain barrier, tau hyperphosphorylation and senile plaques formation in AD. It has been suggested that inhibition of sodium glucose cotransporter 2 (SGLT2) mediated by constant glucose loss, may restore mTOR cycle via nutrient-driven, preventing or even decreasing the AD progression. Currently, there is an unmet need for further research insight into molecular mechanisms that drive the onset and AD advancement as well as an increase in efforts to expand the testing of potential therapeutic strategies aimed to counteract disease progression in order to structure effective therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160780PMC
http://dx.doi.org/10.3390/biomedicines9050576DOI Listing

Publication Analysis

Top Keywords

shared pathogenic
8
pathogenic mechanism
8
alzheimer's disease
8
metabolic dysfunction
8
systemic actions
4
actions sglt2
4
sglt2 inhibition
4
inhibition chronic
4
mtor
4
chronic mtor
4

Similar Publications

Unlabelled: The T cell receptor (TCR) repertoire of intestinal CD4+ T cells is enriched for specificity towards microbiome-encoded epitopes shared among many microbiome members, providing broad microbial reactivity from a limited pool of cells. These cells actively coordinate mutualistic host-microbiome interactions, yet many epitopes are shared between gut symbionts and closely related pathobionts and pathogens. Given the disparate impacts of these agents on host health, intestinal CD4+ T cells must maintain strain-level discriminatory power to ensure protective immunity while preventing inappropriate responses against symbionts.

View Article and Find Full Text PDF

Background: Understanding the diversity and distribution of fungal communities at a regional scale is important since fungi play a crucial role in ecosystem functioning. Our study used environmental metagenomics to determine fungal communities in mountainous forest soils in the central highlands of Mexico.

Methods: We used four different bioinformatic workflows to profile fungal assemblages, .

View Article and Find Full Text PDF

Next-generation vaccines for influenza B virus: advancements and challenges.

Arch Virol

January 2025

CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China.

To battle seasonal outbreaks of influenza B virus infection, which continue to pose a major threat to world health, new and improved vaccines are urgently needed. In this article, we discuss the current state of next-generation influenza B vaccine development, including both advancements and challenges. This review covers the shortcomings of existing influenza vaccines and stresses the need for more-effective and broadly protective vaccines and more-easily scalable manufacturing processes.

View Article and Find Full Text PDF

Purpose: Cryptosporidium spp. and Giardia duodenalis are zoonotic protozoan parasites that are widely seen in domestic and wild animals worldwide. While these pathogens, which affect the digestive system of the hosts, cause high economic losses in animal breeding, they are also considered an important public health problem.

View Article and Find Full Text PDF

A Sorghum / Homolog Functions in PAMP-Triggered Immunity and Cell Death in Response to Infection.

Phytopathology

January 2025

University of Florida, Microbiology & Cell Science, Cancer/Genetics Research Complex 302, 2033 Mowry Road, Gainesville, Florida, United States, 32610;

(L.) Moench is the fifth most important cereal crop and expected to gain prominence due to its versatility, low input requirements, and tolerance to hot and dry conditions. In warm and humid environments the productivity of sorghum is severely limited by the hemibiotrophic fungal pathogen , the causal agent of anthracnose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!