Chronic kidney disease (CKD) is a public health concern that affects approximately 10% of the global population. CKD is associated with poor outcomes due to high frequencies of comorbidities such as heart failure and cardiovascular disease. Uremic toxins are compounds that are usually filtered and excreted by the kidneys. With the decline of renal function, uremic toxins are accumulated in the systemic circulation and tissues, which hastens the progression of CKD and concomitant comorbidities. Gut microbial dysbiosis, defined as an imbalance of the gut microbial community, is one of the comorbidities of CKD. Meanwhile, gut dysbiosis plays a pathological role in accelerating CKD progression through the production of further uremic toxins in the gastrointestinal tracts. Therefore, the gut-kidney axis has been attracting attention in recent years as a potential therapeutic target for stopping CKD. Trimethylamine N-oxide (TMAO) generated by gut microbiota is linked to the progression of cardiovascular disease and CKD. Also, advanced glycation endproducts (AGEs) not only promote CKD but also cause gut dysbiosis with disruption of the intestinal barrier. This review summarizes the underlying mechanism for how gut microbial dysbiosis promotes kidney injury and highlights the wide-ranging interventions to counter dysbiosis for CKD patients from the view of uremic toxins such as TMAO and AGEs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158751 | PMC |
http://dx.doi.org/10.3390/toxins13050361 | DOI Listing |
Kidney Med
January 2025
Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT.
Rationale & Objective: Peritoneal dialysis (PD) solutions provide both clearance of uremic toxins and sodium and water. An intraperitoneal (IP) solution of icodextrin and glucose designed without the requirement for uremic toxin clearance could provide substantially greater sodium and water removal than PD solutions.
Study Design: We examined varying concentrations of icodextrin and dextrose IP solutions in rats.
J Nephrol
January 2025
Nephrology Unit, V. Fazzi Hospital, Lecce, Italy.
Background: The KDIGO recommendation in acute kidney injury (AKI) patients requiring kidney replacement therapy is to deliver a Urea Kt/V of 1.3 for intermittent thrice weekly hemodialysis, and an effluent volume of 20-25 ml/kg/hour when using continuous renal replacement therapy (CRRT). Considering that prior studies have suggested equivalent outcomes when using CRRT-prolonged intermittent renal replacement therapy (PIRRT) effluent doses below 20 mL/kg/h, our group investigated the possible benefits of low effluent volume CRRT-PIRRT (12.
View Article and Find Full Text PDFCureus
December 2024
Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, JPN.
Background: The uremic toxin indoxyl sulfate (IS) is an important factor in chronic kidney disease (CKD) progression. Inhibitors of the renin-angiotensin system and add-on therapy with mineralocorticoid receptor (MR) antagonists can help reduce proteinuria and suppress CKD progression. However, the association between IS and MR activation remains unknown.
View Article and Find Full Text PDFBalkan Med J
January 2025
Department of Clinical Pharmacy, China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, China.
Nefrologia (Engl Ed)
January 2025
Nephrology Service, University Hospital Reina Sofia, Cordoba-Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain University of Cordoba, Cordoba, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud, RICORS2040, Institute of Health Carlos III, Madrid, Spain; European Uremic Toxins Group (EUTOx). Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!