1,2,3-Triazoles as Biomimetics in Peptide Science.

Molecules

Laboratory of Applied Organic Chemistry, Faculty of Science and Technology, Sidi Mohammed Ben Abdellah University, Immouzer Road, Fez 30050, Morocco.

Published: May 2021

AI Article Synopsis

  • Natural peptides play a crucial role in various biological processes but face challenges like low bioavailability and degradation when used as drugs.
  • To improve their effectiveness, researchers are looking into creating new molecules that mimic the structure of peptides.
  • One promising approach involves replacing the traditional amide bond in peptides with a 1,2,3-triazole ring, which may enhance biological activity and stability while allowing for the combination of peptides with other functional groups.

Article Abstract

Natural peptides are an important class of chemical mediators, essential for most vital processes. What limits the potential of the use of peptides as drugs is their low bioavailability and enzymatic degradation in vivo. To overcome this limitation, the development of new molecules mimicking peptides is of great importance for the development of new biologically active molecules. Therefore, replacing the amide bond in a peptide with a heterocyclic bioisostere, such as the 1,2,3-triazole ring, can be considered an effective solution for the synthesis of biologically relevant peptidomimetics. These 1,2,3-triazoles may have an interesting biological activity, because they behave as rigid link units, which can mimic the electronic properties of amide bonds and show bioisosteric effects. Additionally, triazole can be used as a linker moiety to link peptides to other functional groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156386PMC
http://dx.doi.org/10.3390/molecules26102937DOI Listing

Publication Analysis

Top Keywords

123-triazoles biomimetics
4
biomimetics peptide
4
peptide science
4
science natural
4
peptides
4
natural peptides
4
peptides class
4
class chemical
4
chemical mediators
4
mediators essential
4

Similar Publications

Biomimetic Silk Nanoparticle Manufacture: Calcium Ion-Mediated Assembly.

ACS Biomater Sci Eng

January 2025

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.

Silk has emerged as an interesting candidate among protein-based nanocarriers due to its favorable properties, including biocompatibility and a broad spectrum of processing options to tune particle critical quality attributes. The silk protein conformation during storage in the middle silk gland of the silkworm is modulated by various factors, including the most abundant metallic ion, calcium ion (Ca). Here, we report spiking of liquid silk with calcium ions to modulate the silk nanoparticle size.

View Article and Find Full Text PDF

The modification of conventional liposomes for targeted antimicrobial delivery to treat infectious diseases.

Discov Nano

January 2025

Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.

Some of the most crucial turning points in the treatment strategies for some major infectious diseases including AIDS, malaria, and TB, have been reached with the introduction of antimicrobials and vaccines. Drug resistance and poor effectiveness are key limitations that need to be overcome. Conventional liposomes have been explored as a delivery system for infectious diseases bioactives to treat infectious diseases to provide an efficient approach to maximize the therapeutic outcomes, drug stability, targetability, to reduce the side-effects of antimicrobials, and enhance vaccine performance where necessary.

View Article and Find Full Text PDF

Unraveling the role of autophagy regulation in Crohn's disease: from genetic mechanisms to potential therapeutics.

Adv Biotechnol (Singap)

March 2024

Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

Autophagy serves as the primary intracellular degradation mechanism in which damaged organelles and self-cytoplasmic proteins are transported to the lysosome for degradation. Crohn's disease, an idiopathic chronic inflammatory disorder of the gastrointestinal tract, manifests in diverse regions of the digestive system. Recent research suggests that autophagy modulation may be a new avenue for treating Crohn's disease, and several promising small-molecule modulators of autophagy have been reported as therapeutic options.

View Article and Find Full Text PDF

Exogenous Coreactant-Free Electrocatalytic Reactive Oxygen Species-Driven Dual-Signal Molecularly Imprinted Electrochemiluminescence Sensor for the Detection of Trenbolone.

Anal Chem

January 2025

The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.

Conventional dual-signal electrochemiluminescence (ECL) sensors feature high sensitivity and reliability, but the involvement of coreactants inevitably results in a complex configuration and shows reproducibility risk. Here, we propose an exogenous coreactant-free dual-signal platform, comprising luminol (anodic luminophore), CdSe quantum dots (cathodic luminophore), and CoO/TiC electrocatalyst (coreaction promoter). At different redox potentials, CoO/TiC induces water oxidation and oxygen reduction to produce OH and O radicals, which subsequently drive cathodic and anodic ECL emission, respectively.

View Article and Find Full Text PDF

Purpose: To identify genes and patient factors that are related to the development of arthrofibrosis in patients after anterior cruciate ligament (ACL) reconstruction and to develop a prognostic model.

Methods: The study included patients diagnosed with ACL injury who underwent ACL reconstruction. Patients were enroled consecutively and divided into non-fibrotic (controls) and fibrotic (cases) groups until a balanced sample of matched case-control was achieved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!