The APETALA2 (AP2) transcription factors (TFs) play crucial roles in regulating development in plants. However, a comprehensive analysis of the AP2 family members in a valuable Chinese herbal orchid, , or in other orchids, is limited. In this study, the 14 DoAP2 TFs that were identified from the genome and named DoAP2-1 to DoAP2-14 were divided into three clades: euAP2, euANT, and basalANT. The promoters of all genes contained -regulatory elements related to plant development and also responsive to plant hormones and stress. qRT-PCR analysis showed the abundant expression of , , , and genes in protocorm-like bodies (PLBs), while , , , , and expression was strong in plantlets. In addition, the expression of some genes was down-regulated during flower development. These results suggest that genes may play roles in plant regeneration and flower development in . Four genes ( from euAP2, - from euANT, and and from basal ANT) were selected for further analyses. The transcriptional activation of DoAP2-1, DoAP2-2, DoAP2-6 and DoAP2-11 proteins, which were localized in the nucleus of mesophyll protoplasts, was further analyzed by a dual-luciferase reporter gene system in leaves. Our data showed that pBD-DoAP2-1, pBD-DoAP2-2, pBD-DoAP2-6 and pBD-DoAP2-11 significantly repressed the expression of the LUC reporter compared with the negative control (pBD), suggesting that these DoAP2 proteins may act as transcriptional repressors in the nucleus of plant cells. Our findings on genes in shed light on the function of genes in this orchid and other plant species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156592 | PMC |
http://dx.doi.org/10.3390/ijms22105221 | DOI Listing |
Int J Mol Sci
January 2025
Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
ERF56, a member of the APETALA2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) transcription factor (TF) family, was reported to be an early nitrate-responsive TF in . But the function of in nitrate signaling remains not entirely clear. This study aimed to investigate the role of in nitrate-dependent plant growth and nitrate signaling.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
Background: The C-repeat binding factor (CBF)/dehydration-responsive element binding (DREB1) belongs to a subfamily of the AP2/ERF (APETALA2/ethylene-responsive factor) superfamily, which can regulate many physiological and biochemical processes in plants, such as plant growth and development, hormone signal transduction and response to abiotic stress. Although the CBF/DREB1 family has been identified in many plants, studies of the CBF/DREB1 family in alfalfa are insufficient.
Results: In this study, 25 MsCBF genes were identified in the genome of alfalfa ("Zhongmu No.
Plant Direct
January 2025
Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal Medicines Henan Academy of Agricultural Sciences Zhengzhou China.
The superfamily represents a class of transcription factors involved in plant growth, development, and stress responses. ., also known as safflower, is an important plant whose flowers contain carthamin, an expensive aromatic pigment with various medicinal and flavoring properties.
View Article and Find Full Text PDFGenes (Basel)
December 2024
State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China.
: BABY BOOM (BBM), a transcription factor from the APETALA2 (AP2) protein family, plays a critical role in somatic embryo induction and apomixis. has now been widely applied to induce apomixis or enhance plant transformation and regeneration efficiency through overexpression or ectopic expression. However, the structural and functional evolutionary history of genes in plants is still not well understood.
View Article and Find Full Text PDFNat Commun
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, Shandong, China.
While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that are induced by salt stress and play key roles in salt-repressed nodulation. Loss of GmERF13 function increases nodule density, while its overexpression suppresses nodulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!