Stages of Gut Development as a Useful Tool to Prevent Gut Alterations in Piglets.

Animals (Basel)

Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy.

Published: May 2021

During the prenatal, neonatal, and weaning periods, the porcine gastrointestinal tract undergoes several morpho-functional, changes together with substantial modification of the microbial ecosystem. Modifications of the overall structure of the small intestine also occur, as well as a rapid increase of the volume, mainly in the last period of gestation: intestinal villi, starting from jejunum, appears shortly before the sixth week of gestation, and towards the end of the third month, epithelial cells diversify into enterocytes, goblet cells, endocrine, and Paneth cells. Moreover, in the neonatal period, colostrum induces an increase in intestinal weight, absorptive area, and brush border enzyme activities: intestine doubles its weight and increases the length by 30% within three days of birth. During weaning, intestinal environment modifies drastically due to a replacement of highly digestible sow milk by solid feed: profound changes in histological parameters and enzymatic activity are associated with the weaning period, such as the atrophy of the villi and consequent restorative hypertrophy of the crypts. All these modifications are the result of a delicate and precise balance between the proliferation and the death of the cells that form the intestinal mucosa (i.e., mitosis and apoptosis) and the health conditions of the piglet. An in-depth knowledge of these phenomena and of how they can interfere with the correct intestinal function can represent a valid support to predict strategies to improve gut health in the long-term and to prevent weaning gut alterations; thus, reducing antimicrobial use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155857PMC
http://dx.doi.org/10.3390/ani11051412DOI Listing

Publication Analysis

Top Keywords

gut alterations
8
intestinal
5
stages gut
4
gut development
4
development tool
4
tool prevent
4
prevent gut
4
alterations piglets
4
piglets prenatal
4
prenatal neonatal
4

Similar Publications

Role of the gut microbiome in psychological symptoms associated with inflammatory bowel diseases.

Semin Immunopathol

January 2025

Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.

The brain-gut axis constitutes the basis for the bidirectional communication between the central nervous system and the gastrointestinal tract driven by neural, hormonal, metabolic, immunological, and microbial signals. Alterations in the gut microbiome composition as observed in inflammatory bowel diseases can modulate brain function and emerging empirical evidence has indicated that interactions among the brain-gut microbiome-axis seem to play a significant role in the pathogenesis of both inflammatory bowel diseases and psychiatric disorders and their comorbidity. Yet, the immunological and molecular mechanisms underlying the co-occurrence of inflammatory bowel diseases and psychological symptoms are still poorly understood.

View Article and Find Full Text PDF

Introduction: Altered vascular microcirculation is recognized as a risk factor for anastomotic leakage (AL) in colorectal surgery. However, few studies evaluated its impact on AL using different devices, with heterogeneous results. The present study reported the initial experience measuring gut microcirculatory density and flow with the aid of incidence dark-field (IDF) videomicroscopy (Cytocam, Braedius, Amsterdam, The Netherlands) comparing its operative outcome using a propensity score matching (PSM) model based on age, gender, and Charlson Comorbidity Index (CCI).

View Article and Find Full Text PDF

Background: Fasting-mimicking diet (FMD) boosts the antitumour immune response in patients with colorectal cancer (CRC). The gut microbiota is a key host immunity regulator, affecting physiological homeostasis and disease pathogenesis.

Objective: We aimed to investigate how FMD protects against CRC via gut microbiota modulation.

View Article and Find Full Text PDF

Integrative multi-omics analysis of autism spectrum disorder reveals unique microbial macromolecules interactions.

J Adv Res

January 2025

Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt. Electronic address:

Introduction: Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear.

Objectives: This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome.

Methods: The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed.

View Article and Find Full Text PDF

A High Fat, High Sugar Diet Exacerbates Persistent Post-Surgical Pain and Modifies the Brain-Microbiota-Gut Axis in Adolescent Rats.

Neuroimage

January 2025

Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program. Electronic address:

Persistent post-surgical pain (PPSP) occurs in a proportion of patients following surgical interventions. Research suggests that specific microbiome components are important for brain development and function, with recent studies demonstrating that chronic pain results in changes to the microbiome. Consumption of a high fat, high sugar (HFHS) diet can drastically alter composition of the microbiome and is a modifiable risk factor for many neuroinflammatory conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!